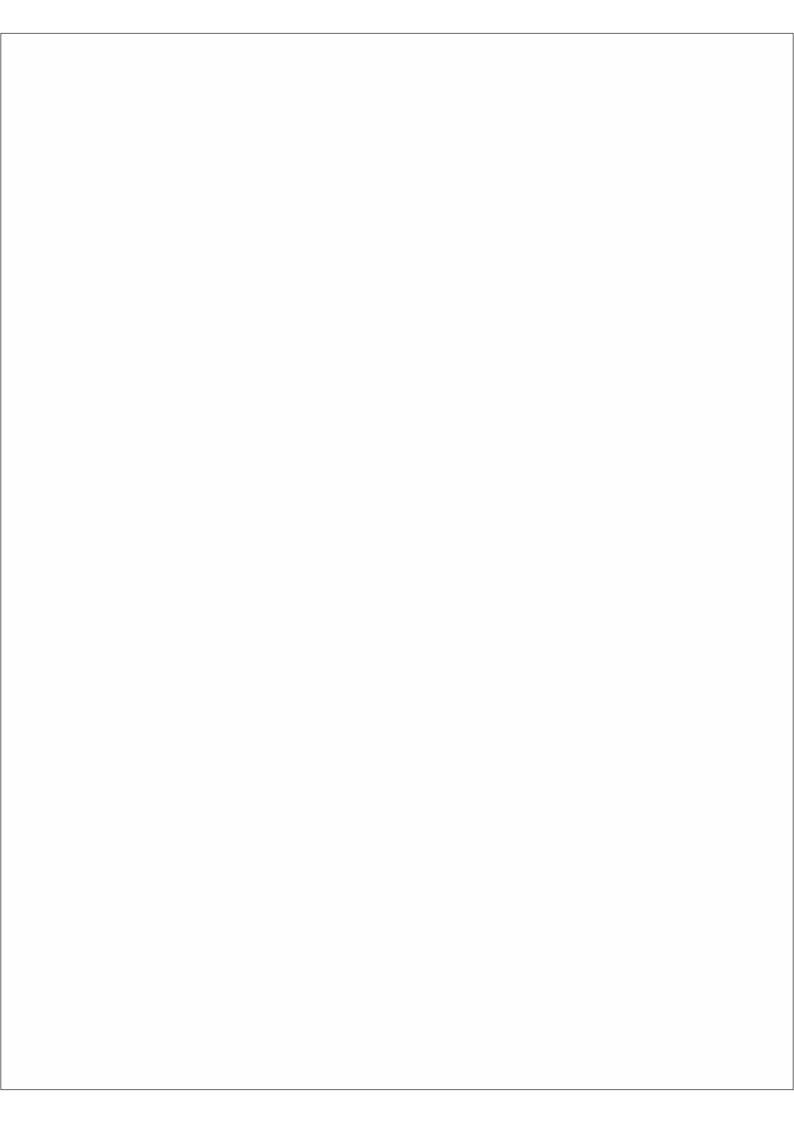
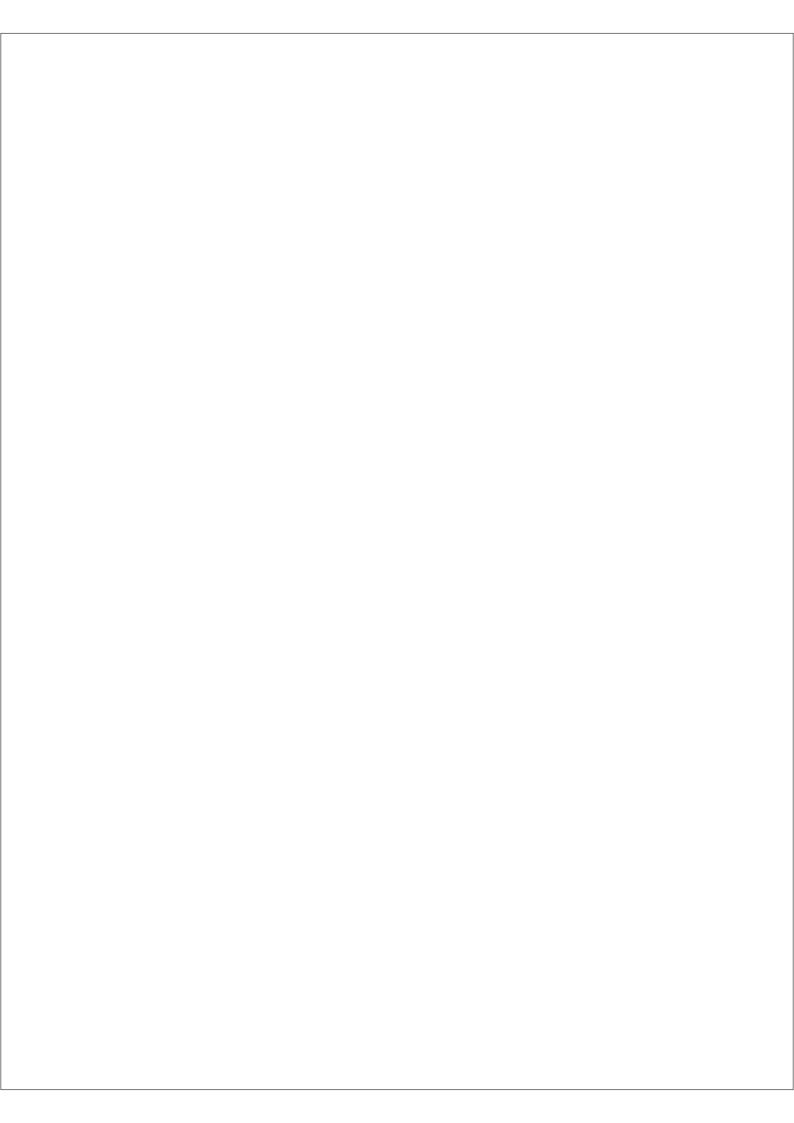
वार्षिक प्रतिवेदन ANNUAL REPORT 2013-2014



राष्ट्रीय कृषि-खाद्य जैव प्रौद्योगिकी संस्थान

National Agri-Food Biotechnology Institute

(जैव प्रौद्योगिकी विभाग, भारत सरकार का एक स्वायत्तशासी संस्थान) सी–127, इंडस्ट्रीयल एरिया, फेज़ 8, अजीतगढ़ (मोहाली), पंजाब, इंडिया–160 071 ईपीएबीएक्सः +91-172-2290100, फैक्सः 0172-4604888


वैबसाइटः www.nabi.res.in

सूची

क्रम सं.	विवरण	पृष्ठ
1.	कार्यकारी निदेशक की कलम से	1
2.	नाबी के लक्ष्य एवं उद्देश्य	3
3.	अनुसंधान में प्रगति	5
4.	उभरते हुए क्षेत्र	85
5.	सहयोग एवं सम्पर्क के माध्यम से सहभागिता	91
6.	बाह्य अनुदान एवं निधियाँ	92
7.	मुख्य परिसर में अवसंरचना स्थापना की प्रगति	93
8.	राष्ट्रीय एंव अतर्राष्ट्रीय सम्मेलनों / कार्यशालाओं में प्रतिभागिता	96
9.	शासन	99
10.	संस्थान का प्रबंधन	101
11.	अनुसंधान प्रकाशन	111
12.	मानव संसाधन	115
13.	महत्त्वपूर्ण कार्यक्रमों की चित्र दीर्घा	121
14.	वित्तीय	128

कार्यकारी निदेशक की कलम से

राष्ट्रीय कृषि—खाद्य जैव प्रौद्योगिकी संस्थान ने कृषि, खाद्य तथा पोषण के अंतरापृष्ठ पर प्रायोगिक आकार तथा मूलभूत संरचना के प्रोत्साहन एवं समन्वयन अनुसंधानों के मूलभूत उद्देश्यों को स्थापित करते हुए चार वर्ष पूर्ण किए हैं। यह वर्ष नाबी के लिए बहुत महत्वपूर्ण रहा है। यह समय हमारे अनुसंधान प्रकाशन का प्रारंभ एवं पड़ोसी संस्थानों के साथ सहयोग के साथ सफल रहा है।

कषि-जैव-प्रौद्योगिकी के क्षेत्र में यहां महत्वपूर्ण अनुसंधान कार्य किये जा रहे हैं। यह संस्थान गुणवत्ता से सम्बंधित जीनों की संभावित भूमिका को सम्बोधित करके इनके गेहूँ में गुणवत्ता प्रभाव पर अध्ययन कर रहा है। जीनोमी-वाइड ट्रांसक्रिप्टोम अध्ययन का उपयोग उम्मीदवार विषयक एवं संबंधित जीनों का अर्थ निकालने में किया जा रहा है। इसके अतिरिक्त, अनाज की कठोरता एवं नरमाई से संबंधित जीन में बहुरूपता की खोज कर एक अद्यतन डाटाबेस बनाया गया है। बेहतर जीविका के लिए संभावना सहित गेंहू की वन्य किस्म (एग्रोपाइरोन इलोंगटम) के नए क्रोमोसोम विनिर्दिष्ट ट्रांसलोकेशन लाइनें उत्पादित की गई हैं। उच्च अनुवर्ती कृषिजोपजाति से उच्च प्रोसेसिंग गुणवत्ता जीन हस्तांतरण से चिन्हित सहायक ब्रीडिंग प्रगति पर है। विषम गेहूँ कृषिजोपजाति में माइक्रोन्यूट्रिएंट की जैव उपलब्धता, आयरन का स्थानीकरण बढाने के लिए परिकल्पना योजना प्रतिवेदित की गई हैं। उसी प्रकार से एंटी न्यूट्रीएंट जैसे कि गेहूँ में फाइटिक एसिड के संचयन के लिए भी जीन जिम्मेवार है, वह भी पृथक किए गए हैं। बीज विकास का अध्ययन मूलभूत विज्ञान में अनुसंधान का एक अन्य बड़ा क्षेत्र है। प्रमुख नकारात्मक तथा रूट-साइफन में लक्ष्य फल की फसलों के विकास अथवा नियंत्रित बीजरहित (सीडलेसनेस) प्रकृति के अध्ययन में अब हमारी पहुँच बढ़ी है। लक्षित म्यूटाजेनेसिस के लिए सीआरआईएसपीआर-केस सिस्टम की उययोगिता गेहँ निलम्बन सेल में प्रदर्शित की गई है। गेहँ के एक-एक कीटाणू की पहचान की गई थी, जिसकी

रिपोर्ट पिछले वर्ष उपलब्ध की गई। परिवर्ति एवं नवीनतम करने के लिए लक्षित जीन साइलेंसिंग हेतु भी आवेदन किया गया था, इसलिए हाई—युपुट फंक्शनल स्क्रीनिंग का उचित विकास किया गया है।

भारतीय केले की विकसित पोषकता से भरपर (हाइ प्रो-विटामिन-ए) ट्रांसजेनिक वैरायटियों का एक बह-संस्थागत कार्यक्रम इस मार्ग पर चलाया गया है। पोस्ट हार्वेस्ट विज्ञान एक अन्य महत्वपूर्ण क्षेत्र है, जहाँ पर संस्थान प्रभावकारी कुछ प्रोसेसिंग तकनीकी को उपयोग करके फलो को नुकसान से बचाने में प्रयत्नशील है। ताजा फलों की गुणवत्ता, सुरक्षा तथा पोस्ट हार्वेस्ट स्थिरता खाद्य जैव तकनीक में अनुसंधान का क्षेत्र है। आम व केला फलों में कृत्रिम फल पक्वन से सम्बधित बायोमार्कर की खोज एवं वैधता विकासाधीन है। 'किन्नू' संतरा की फ्लेवर, न्यूट्रिशन एवं प्रोसेसिंग गुणवत्ता के हाई-युपुट विश्लेषण फल उपापचयी पर विभिन्न प्री एवं पोस्ट हार्वेस्ट कारकों के सबंधित प्रभाव पडते हैं तथा यह ताजा एवं प्रोसेसिंग उद्योग हेतू फलों की उपयुक्तता पर परिणामतस्वरूप है।

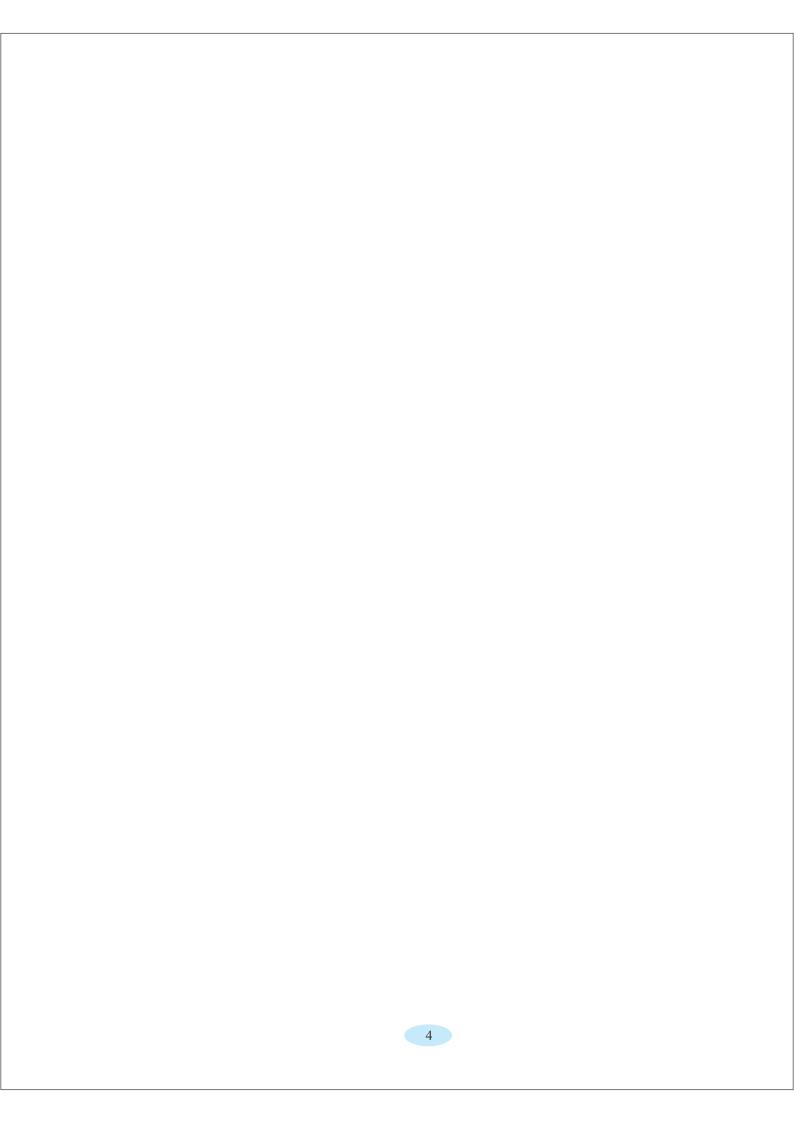
खाद्य एवं पोषण क्षेत्र दोनों (न्यून तथा अधिक पोषण) प्रकार के मालन्यूट्रीशन पर केन्द्रित है। पोषण के अधीन माइक्रोन्यूट्रीएंट विशेषतः आयरन, गर्भवती, स्तनपान कराने वाली महिलाओं, बच्चों तथा अन्य जनसंख्या में अनिमिया का अग्रणी है। बहुल प्रयास जैसे कि नैनो बायोटेक्नोलॉजी के उपयोग से आयरन बायो एवेलबिलिटी को बढाना तथा प्राकृतिक संघटकों को पहचाना जा रहा है, जिससे आयरन होमियोस्टेटिस को बनाया जाए। इस तरह माइक्रोन्यूट्रिएंट हीनता के उपाय से संस्थान में प्रगति पर है। आयरन एलजीनेट इनकेप्सुलेटेड फेरिक सैकरेट माइक्रोइम्लसन संश्लेषित निशिष्टता तथा वर्तमान मूल्यांकन अध्यन भी किया गया है। साथ–साथ, भारतीय बाजरा किस्मों, मसालों तथा प्रीबायोटिक्स से आहार संघटकों. अधिक पोषण तथा सम्बन्धित जटिलताओं के क्षेत्र में इन-विवो में तथा इन-विट्रो मॉडल सिस्टमों, दोनों में उपयोग से

लाभकारी प्रभावों हेतु अध्ययन किया है। फिंगर मिलेट के लाभकारी प्रभावों हेतु पूर्ण अनाज एवं ऊपरी छिलको से मोटापन पर विशिष्ट एंटी—इंनफ्लेमेटरी गतिविधि, एंटी—ऑक्सीडेंट गतिविधि तथा गुट माइक्रोबायल मोड्युलेशन के पशु मॉडल में जांच की गई है। न्यूट्रिजीनोमिक तथा ट्रांसिएंट रिसिप्टर पोटेन्शियल (टीआरसी) के मैकेनिज्म संघटक चेनल मध्यस्थ दैनिक आहार नियमन को कैपसाइसिन (लाल मिर्च), सिनामाल्डेहाइड (दालचीनी), अलिसिन (लहसून एवं प्याज) के उपयोग को रिपोर्ट किया गया है। आगे, एंटी—ऑक्सीडेंट तथा एंटी ओवसिटी एडियोजेंसिस गतिविधियों पर उनके परिणाम तथा भारतीय बाजरा किस्मों से फिनोलिक एसिड सीमा विवाचन की अच्छी संरचना में संरचनागत परिवर्तनशील प्रक्रिया की गई है।

पशु एवं फसल बायोटेक्नोलॉजी के क्षेत्र में हमारी जीनोमिक्स विश्लेषण क्षमता को बढ़ाया गया है। संस्थान ने खाद्य जीनोम्स के तुलनात्मक विश्लेषण तथा डाटा माइनिंग हेतु अग्रिंम एल्गोरिथम, डाटाबेस, टूल्स एवं पाइपलाइन के विकास के लिए कार्य प्रारंभ किया है। लघु आरएनए आधारित विनियमन बीज विकास के दौरान लक्ष्य रखा गया था। 10.1 टेराफ्लोप सुपर कम्प्यूटिंग सुविधा ने ट्रांसक्रिप्टॉम तथा जीनोमी आधारित विश्लेषण को बढ़ावा दिया है। बायोलोजेस्ट ने यूजर फ्रेंडली वेब इंटरफेस से इस सुपर कम्प्यूटिंग सुविधा के सरल उपयोग हेतु विकास किया है।

मानव संसाधन विकास हमारी एक प्राथमिकता है। संस्थान में वर्तमान में 19 पी.एचडी. विद्यार्थी तथा 20 जूनियर रिसर्च अध्येता व परियोजना सहायक है। इसके अलावा नाबी, कृषि, खाद्य व पोषण बायोलॉजी के विविध क्षेत्रों में युवा विद्यार्थियों हेतु अनुसंधान प्रशिक्षण प्रदान करने में भी कार्यरत है। पीजीआईएमईआर चंडीगढ़ के सहयोग के साथ नाबी की पोषणिक जीव—विज्ञान में इंटेग्रेटेड मास्टर्स— पी. एचडी. कार्यक्रम के उद्देश्य हेतु बाह्य निधियों हेतु अनुशंसित किया गया है। वर्तमान में संस्थान विभिन्न राष्ट्रीय एवं अंतर्राष्ट्रीय एजेंसियों से 12 बाह्य निधि अनुदानों को उपयोग कर रहा है।

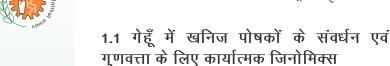
4 वर्षों की अल्प अवधि में नाबी ने उच्च गुणवत्ता अनुसंधान कार्यक्रमों का प्रारंभ बहुल फंडिंग एजेंसियों से सुनिश्चित बाह्य अनुदान, राष्ट्रीय एवं अंतर्राष्ट्रीय भागीदारों के सहयोग से कार्यक्रम तथा प्रशिक्षित मानव संसाधन विकास में अतुलनीय उन्नित की है। सभी संबंधितों से पूर्ण समर्थन बहुत अधिक प्रशंसनीय है तथा हम प्रगति की ओर अग्रसर हैं।


> प्रोफेसर अखिलेश कुमार त्यागी, कार्यकारी निदेशक (अतिरिक्त प्रभार) तथा प्रोफेसर

नाबी के लक्ष्य एवं उद्देश्य

ज्ञान सृजन एवं ट्रांस्लेशनल विज्ञान के लिए एक नोडल संगठन होना, जिससे कि कृषि-खाद्य जैव प्रौद्योगिकी नवाचारों के आधार पर मूल्य आवर्धित उत्पाद विकसित किए जा सकें।

- उच्च स्तरीय खाद्य प्रक्रमण सहित प्राथमिक एवं गौण कृषि कार्यों में नवाचार समाधानों में कृषि —खाद्य क्षेत्र को विश्व स्तर पर मान्यता प्राप्त एवं पोषणक्षम जैवप्रौद्योगिकी आधारित उद्यम के रूप में परिवर्तित करना।
- कृषि—खाद्य क्षेत्र में ज्ञान प्रदाताओं एवं निवेशकों के बीच संपर्क स्थापित करना, जिससे कि नवाचार को बाजार तक पहुँचाया जा सके।



अनुसंधान में प्रगति

पोषक तत्वों एवं गुणवत्ता प्रक्रमण के लिए अनाजों में सुधार

1.1.1 गेहूँ में प्रोसेसिंग एवं पोषण गुणवत्ता के सुधार हेतु जीन की खोज

प्रमुख अन्वेषक

जॉय के रॉय

अनुसंघान अध्येता

अनुराधा सिंह मोनिका शर्मा पंकज कुमार

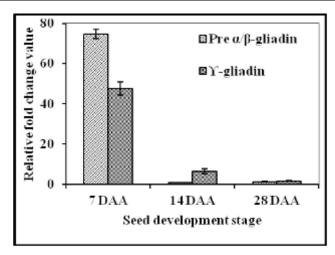
भूमिका

गेहूँ का आटा खाद्य उत्पादों में वृहत स्तर पर उपयोग किया जाता है, जिनकी कम्प्लेक्श गुणवत्ता अनाजों जैसे कि भंडारित प्रोटीन, स्टार्च, फिनोलिक्स, लिपिड आदि के सम्मिश्रित बायोकेमिकल पर मुख्यतः आश्रित होती है। गेहूँ का अनाज 70 प्रतिशत स्टार्च से युक्त होता है जिसमें पोष्टिक स्टार्च में सुधार की भी आवश्यकता है। उदाहरणार्थ स्वरूप गेहूँ आहार के लिए उच्च एमीलोज-स्टार्च या प्रतिरोधी स्टार्च है। वर्तमान किरमें बेकिंग एवं प्रोसेसिंग उद्योगों के लिए बेहतर प्रोसेसिंग गुणवत्ता तथा उपभोक्ताओं हेत् स्वस्थ गेहूँ आहार की बढ़ती हुई मांग को पूरा करने हेत् दोनों पोषण एवं प्रोसेसिंग गुणवत्ता में सुधार करने की आवश्यकता है। जीन का जिनेटिकल एवं संघटक ज्ञान तथा उसकी गुणवत्ता ट्रेट से सम्बंधित विनियमन अंडरलोइंग पोषण एवं प्रोसेसिंग है तथा गेहूँ में प्रोसेसिंग एवं पोषण गुणवत्ता के सुधार के लिए पर्यावरण के साथ स्वयं में पारस्परिक क्रिया महत्वपूर्ण है। इस परियोजना में, उम्मीदवार जीन तथा इसके पश्चात उम्मीदवार जीनों का एक सबसेट कारणात्मक जीनों की पहचान के लिए लक्ष्य है तथा उसकी कोडिंग व 5' नॉन—कोडिंग विनियमन सिंगल न्युक्लोटाइड पॉलिमोरफिज्म (एसएनपी'ज) तथा इसके पश्चात प्रयोजनमूलक वैधता उत्पादक जीन से होती है तथा इसके गेहूँ सुधार तथा / अथवा संघटक ब्रीडिंग के माध्यम से बढ़ावा हेत् एसएनपी' है।

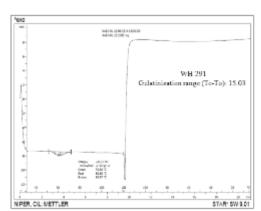
उद्देश्य

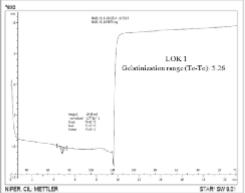
1. एफिमेट्रिक्स® गेहूँ माइक्रोएरेज पर 55 के ट्रांसक्रिप्टस वर्तमान उपयोग उम्मीदवार जीनों

- की पहचान।
- 2. ट्रांसक्रिप्टोम तथा लघु आरएनए अनुक्रमण के माध्यम से अतिरिक्त उम्मीदवार जीनों की पहचान।
- गेहूँ जर्मप्लास एकत्रीकरण के एक सबसेट पर ट्रेटों से संबंधित प्रोसेसिंग एवं पोषण का फिनोटाइपिंग।
- 4. कारणात्मक जीनों की पहचान तथा उनके एसएनपी'ज कार्यान्वयन संस्था का अध्ययन उपगमन।


अनुसंधान में प्रगति

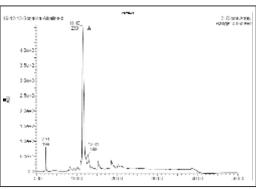
- 110 उम्मीदवार जीन प्रोबेसेट का एक सेट चार भागों में गेहूँ किरमों (सी306, लोक1, सोनालिका तथा डब्लयू एच291) (सिंह इटी एएल2014) में विश्लेषित दो—मार्गी एनोवा के माध्यम से 55 के गेहूँ ट्रांसक्रिप्टस में पहचान की गई है। प्रोसेसिंग एवं पोषण गुणवत्ता से संबंधित कई मुख्य जीन भी इस ट्रेट अध्ययन में पहचाने गए।
- यह अभिकल्पन उत्तक तथा वृद्धि प्रकार्यात्मक वैधीकरण परीक्षणों के लिए उम्मीदवार जीनों की अभिव्यक्ति के स्थानिक वितरण समझने हेतू भी महत्वपूर्ण है। उम्मीदवार जीनों की अभिव्यक्ति का स्थानिक वितरण 10 विकास स्टेजों जैसे कि अंकुरण, पौध वृद्धि, टिलरिंग, तना दीर्घीकरण, बूटिंग, पुष्पण निर्गमन, एन्थेसिस, दुग्ध विकास, डग विकास, पक्वन तथा 1405 नमन्रों के मेटा विश्लेषण के माध्यम से भ्रूणपोष, तुष, कैरिओपसिस, भ्रूण, पत्ती, रूट, कोलिओप्टाइल, मेसोकोटी1, पौध, आवरण, भाट, भाट अपेक्स, पत्ती, पताका पत्ती, शिखर, पुष्पण, भाूकिका, स्त्री-केसर, परागकोश तुष आदि के साथ 22 उत्तकों में अध्ययन किया गया था, जो एफिमेट्रिक्स® के ट्रिटिकम एस्टीवम माइक्रोअरी डाटाबेस में उपलब्ध है।
- उम्मीदवार जीन के एक सबसेट का जीन अभिव्यक्ति विश्लेषण (क्यूआरटीपीसीआर) विविध गेहूँ जीनोटाइप्स में उनकी विभिन्न अभिव्यक्ति वैधता हेतु भी है (तालिका 1, चित्र—1)।

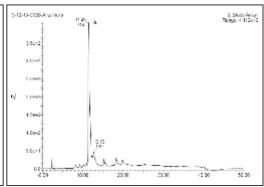

तालिका 1 : ईआरटी—पीसीआर एवं गेहूँ माइक्रोएरी के माध्यम से अच्छी (सी 306) तथा खराब (सोनालिका) गुणवत्ता किस्म अनुमान के बीच दो उम्मीदवार जीनों की अभिव्यक्ति की फोल्ड चेंज वेल्यू 'डीडीए (एनथिसिस के पश्चात दिन)


Gene/seed development stage*	Fold change values in gene expression between C306 and Sonalika				
	qRT-PCR	wheat microarrays			
Pre α/β-gliadin					
7 DAA	74.7	100.7			
14 DAA	1.0	-1.0			
28 DAA	1.4	1.2			
γ gliadin					
7 DAA	47.6	38.8			
14 DAA	6.4	-1.4			
28 DAA	1.7	-2.0			

चित्र—1: तीन बीज विकास स्टेज क्यूआरटी—पीसीआर के उपयोग पर अच्छी (सी 306) तथा खराब (सोनालिका) गुणवत्ता किस्मों के मध्य दो उम्मीदवार (प्री—a/b ग्लादिन तथा y- ग्लादिन) की विभिन्न अभिव्यक्ति (फोल्ड चेंज की वैधता)

- 4. एफिमेट्रिक्स® गेहूँ एरेस पर फिनिलप्रोपनोड बायोसिंथेसिस पथवे जीन के 63 प्रोबसेट, तीन बीज विकास स्टेज (7, 14 एवं 28 डीडीए) पर अच्छी (सी 306) तथा खराब (सोनालिका) गुणवत्ता किस्मों के बीच न्यूनतम दो फोल्ड परिवर्तनों पर पैंतिस प्रदर्शित हुए। उदाहरण के लिए नटिनजेनिन क्लकोन सिंथेस (टीए. 9172.1 एस 1 तथा टीए. 9172.1 एस1x एटी) की अभिव्यक्ति बीज विकास (14डीएए) की मिडल स्टेज में निम्नतर तथा सोनालिका के सम्बन्ध सहित सी 306 में जीव विकास (28डीएए) की परवर्ती स्टेज में उच्चतर महत्व रखता था।
- 5. दो विविधि गेहूँ जिनोटाइपस में 3 बीज विकास
- स्टेजों पर ट्रांसक्रिप्टोम तथा लघु आरएनए अनुक्रमों के तुलनात्मक विश्लेषण पहचाने गए अतिरिक्त उम्मीदवार जीनों से किया गया है। 10 उम्मीदवार जीन प्रोबसेट्स के न्यूक्लोटाइड अनुक्रम आईडब्ल्यूजीएससी के गेहूँ जिनोमी अनुक्रम डाटाबेस के उपयोग में विस्फोट के माध्यम से गेहूँ क्रोमोसोम्स से भौतिक मानचित्रण किया गया।
- 6. स्टार्च थर्मल, संपत्तियों जैसे कि प्रारंभ, शिखर, सम्पादन तापमान तथा एन्थेलपी से संबंधित प्रोसेसिंग गुणवत्ता 44 गेहूँ विविध जिनटाइप्स यूजिंग विशिष्ट स्केनिंग क्लोरिमैट्री (डएससी) (चित्र—2) के एक सेट पर अनमान था।




चित्र—2: गेहूँ स्टार्च नमूने के थर्मोग्राम स्टार्च थर्मल संपत्ति के निम्न (डब्ल्यूएच 291) तथा उच्च (एलओके 1) प्रारंभिक तापमान (टीओ) प्रदर्शित करता है।

स्टार्च गुणवत्ता प्रभावकारी जिलेंटीनाइजेशन, सेल्फ लाइफ, कोमलता चिपचिपाहट तथा अंतिम उपयोग उत्पादों के मोस्टनेस रखरखाव करता है। उक्त पैरामिटरों में जिनोटाइपस परिवर्तित प्रदर्शित करता है।

7. डग संपत्तियों जैसे कि मेडलाइन शिखर समय, शिखर चौड़ाई, ग्लूटन बल में अंकित से संबंधित प्रोसेसिंग गुणवत्ता एक मिक्शोग्राफ के उपयोग से 381 गेहूँ जिनोटाइपस के एक सेट का अनुमान था। उक्त पेरामीटरों में परिवर्तन कमजोर, मध्यम तथा मजबूत डग सहित गेहूँ किस्मों में पहचाना गया।

8. दो विविध भारतीय गेहूँ किस्में अर्थात सी306 तथा सोनालिका का फिनोलिक यौगिक पहचान तथा मात्रात्मक आकलन हेतु उपयोग किया गया था। कई फिनोलिक यौगिक पहचान की गई दो किसमों के मध्य मुक्त या सीमित रूपों में मौजूदगी/अभाव को प्रदर्शित करता है (चित्र—3)।

चित्र—3 : सोनालिका (बायां) तथा सी306 (दांया) के क्षारीय हाइड्रोलाइज्ड फिनोलिक्स का एचपीएलसी क्रोमेटोग्राम्स (एमएस स्पेक्ट्रा)

- 9. अन्य ट्रेटस जैसे कि स्टार्च ग्रान्यूल आकार, कुल अनाज प्रोटीन संघटक, कुल स्टार्च संघटक, एमिलोस संघटक, बीज लम्बाई एवं चौड़ाई, अनाज का वजन आदि को 55 गेहूँ जिनोटाइप्स के एक सेट पर परिकलित किया गया था।
- 10. कई एसएनपी को 454 तथा इलुमिना प्लेटफोर्म पर ट्रांसक्रिप्टोम डाटा उत्पादन से उनके न्यूक्लोटाइड अनुक्रम सत्त्व तुलना द्वारा 110 उम्मीदवार जीन के कोडिंग क्षेत्रों हेतु दो विविध गेहूँ किस्मों, सी 306 तथा सोनालिका के बीच पहचाने गए थे।

प्रमुख उपलब्धियाँ

- 110 उम्मीदवार जीन का एक सेट एिफमेट्रिक्स
 ® गेहूँ माइक्रोएरेज उपयोग में पहचान किया गया। उम्मीदवार जीन के भौतिक मानचित्रण आईडब्ल्यूएसजी के गेहूँ जिनोमी अनुक्रम डाटा के उपयोग में निर्धारित किया गया।
- 2. स्टार्च थर्मल संपत्तियों तथा डग संपत्तियों से संबंधित प्रोसेसिंग, गुणवत्ता गेहूँ जर्मप्लाजम के एक सब सेट पर अनुमानित किया गया था।
- 3. अन्य ट्रेट जैसे कि स्टार्च ग्रेन्यूल आकार, कुल अनाज प्रोटीन मात्रा, एमिलोस मात्रा, बीज की लंबाई एवं चौड़ाई, अनाज का भार आदि को 55 गेहूं जिनोटाइप्स के एक सेट पर परिकलित किया गया था।
- भारतीय गेहूँ किस्म सी 306 के एक ईएमएस ट्रीटेड एम3 जनसंख्या को उम्मीदवार जीन के क्रियात्मक वैधीकरण के लिए विकसित किया गया है।

भावी परिप्रक्ष्य

- स्टार्च थर्मल संपत्तियों तथा उग संपत्तियों से संबंधित प्रोसें सिंग गुणवत्ता 50 गेहूँ जिनोटाइप्स के एक सेट पर प्रत्युत्तर में अनुमानित किया जाएगा। अन्य सेट जैसे कि उक्त सेट पर स्टार्च ग्रेन्यूल आकार, कुल अनाज तीन प्रत्युत्तर हैं।
- 2. फिनोलिक यौगिक प्रोफाइलिंग के मेटाबोलिटिस तथा जर्मप्लास्ट सेट में उसके परिवर्तन की पहचान की जाएगी।
- जर्मप्लास्ट सेट पर अनुक्रम के माध्यम से उम्मीदवार जीन के कोडिंग व 5' नॉन—कोडिंग क्षेत्रों में एकल न्यूक्लोटाइड पॉलिमोरिफज्म (एसएनपी'ज) की पहचान।

1.1.2 गेहूँ में लौह जैव उपलब्धता बढ़ाने के लिए फायटिक एसिड मार्ग की चयापचय अभियांत्रिकी

प्रमुख अन्वेषक

अजय के. पाण्डेय

सह अन्वेषक

सिद्धार्थ तिवारी

अनुसंघान अध्येता

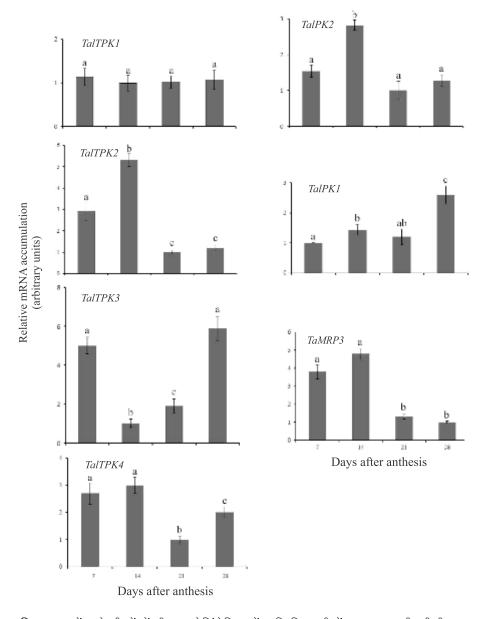
कौशल के. भाटी शिल्पा अग्रवाल शिवानी शर्मा मनदीप कौर

भूमिका

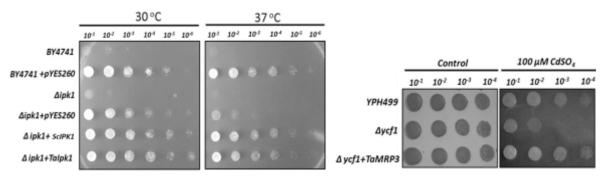
बीज में लौहे जैव उपलब्धता में संवर्धन करने के लिए फायटिक अम्ल (पीए, प्रतिपोषक) को कम करने हेतु पद्धित को विभिन्न फसलों यथा मक्का, सोयाबीन एवं चावल पर प्रयोग किया गया। पीए में संलिप्त जीन गेहूँ से रिपोर्ट नहीं किए गए। इस परियोजना में हम फायटिक अम्ल संश्लेषण जीनों की भूमिका के समाधान के लिए कार्यकारी जिनोमिक उपस्करों का प्रयोग करना चाहते हैं। हमारा पहला लक्ष्य पीए पाथवे में योगदान देने वाले जीनों का पता लगाना है तथा तदुपरांत लिक्षत जीन द्वारा न्यून पीए गेहूँ लाइम्स तैयार करना है। हमें अनुमान है कि घटी हुई पीए मात्रा वाले गेहूँ के दानों में लौह जैव उपलब्धता की वृद्धि प्रदर्शित होगी।

उद्देश्य

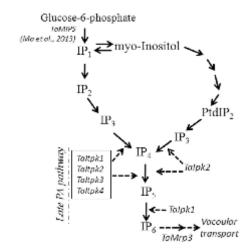
- गेहूँ से पीए पाथवे जीनों की पहचान तथा क्रियात्मक लक्षण—वर्णन।
- 2. आरएनएआई उपगमन के उपयोग द्वारा न्यून फायटेट गेहूँ फसल का विकास।


अनुसंधान प्रगति

- पीए बायोसिंथेसिस्न के लेट फेसों में भामिल जीन फसलों जैसे कि मक्का, सोयाबीन तथा जों में सभी जानते हैं परंतु गेहूँ में बिल्कुल भी नहीं होता रिपोर्ट किया गया।
- 2. हमारे इन सिलिको विश्लेषण में गेहूँ के छह जीनों की पहचान की गई, जो इनोसिटोल फोस्फेट्स के बायोसिन्येसिस में मिली हो सकती है। जीनों के चार इनोसिटोल टेट्राफोसटफेट किनासिस (TaITK1, TaITPK2, TaITPK3, तथा TaIPK2) तथा इनोसिटोल पेंटाकिसफोस्फेट किनास


(TaIPK1) के लिए अन्य दो जिनों के लिए था।

- 3 अतिरिक्त रूप से, हमने Zmlpa-1, एक एबीसीसी सबक्लास मल्टीड्रग विरोध सम्बन्धी ट्रांसपोर्टर प्रोटीन (TaMRP3) के एक होमोलो की पहचान की है, जो पीए ट्रांसपोर्ट में भाामिल अभिव्यक्ति स्तरों का विश्लेषण प्रदिर्शत करता है। यह बीज विकास के दौरान पृथक रूप से अभिव्यक्त करता है तथा कुछ एलेयूसेन टिशू में अधिमानतः अभिव्यक्त करता है। यह परिणाम पीए बायोसिंथेसिस के दौरान चयनित रोल की ओर संकेत करता है तथा दोनों लिपिड
- इंडिपेंडेंट तथा—डिपेंडेंट पथवेज गेहूँ के अनाज के विकास में सक्रिय है (चित्र—4)
- 4. TalPK1 तथा TaMRP3 यीस्ट ScIPK1 तथा Sc ycfit उत्परिवर्ती, क्रमशः प्रमाण प्रदान करने में सक्षम है जिससे गेहूँ के दानों में अनुमानित बायोकेमिकल फंक्शन हो (चित्र—5)। यह पीए बायोसिंथेसिस के लेट फेस में सम्मिलित गेहूँ के दाने की प्रथम व्यापक अध्ययन है (चित्र—6)। इस अध्ययन से उत्पादित ज्ञान द्वारा उत्पादित न्यून फायट गेहूँ के लिए योजना विकास हेतु उपयोग किया जा सकता है।



चित्र-4 : गेंहू के बीजों में पीए बायोसिंथेसिस में सम्मिलित जीनों का क्यूआरटी-पीसीआर

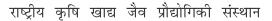
चित्र-5 : TalPK1 तथा TaMRP3 क्रमशः द्वारा यीस्ट IPK1 तथा ycf1 उत्परिवर्ती का पूरकीकरण विश्लेषण।

चित्र—6: गेहूं में पीए मार्ग से सजीन अंशदान का संक्षिप्त प्रदर्शन। इनोसिटोल फोसफेट्स वाय लिपिड डिपडें (पीटीडीआईपी) अथवा लिपिड—इडेंपेंट (आईपी) मार्ग रूप आईपी 3 से हे। गेहूँ जीन सम्भावित दूरी उत्प्रेरक से निकट स्थिति पर अंकित है।

प्रमुख उपलब्धियाँ

- पीए विश्लेषण बीज विकास के साथ आईपी6 संचयन में एक रेखीय वृद्धि सूचित करती है ताी यह संचयन फ्री फोस्फेट सहित निषेधात्मक सह सम्बन्धित है।
- 2. गेहूँ फायटिक अम्ल मार्ग हेतु जीनों की पहचान की गई है तथा TalPK तथा TaMRP3 की यीस्ट उत्परिवर्ती अभियांत्रिकी के लिए अधिकतम उपयुक्त उद्देश्य हो सकता है। यद्यपि अन्य जीनों की भूमिका उपेक्षित नहीं की जा सकती।

भावी परिप्रेक्ष्य


1. लक्षित साइलेसिंग पीए संश्लेषण की अंतिम

- स्टेज में युक्त जीनों के लिए की जाएगी। उत्पादित ट्रांसजेनिक लाइनें लौह की जै उपलब्धता हेतु मूल्यांकित होगा।
- IP₇/IP₈ के संश्लेषण में युक्त जीन अध्ययन किए जाएंगे तथा बाजीं में फास्फेट उद्ग्रहण वृद्धि के नियंत्रण में उसकी सम्भव भूमिका का भी अध्ययन किया जाएगा।

1.1.3 कोन्स्ट्रास्टिंग गेहूँ जीनोटाइप्स के दानों में खनिज वितरण तथा उत्तक—विनिर्दिष्ट ट्रांसक्रिप्टोमिक्स

प्रमुख अन्वेषक राकेश तुली सुधीर पी. सिंह

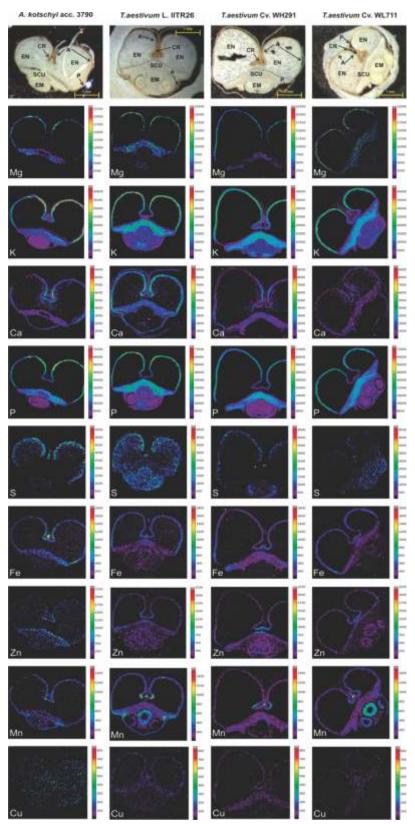
सह–अन्वेषक

श्रीकांत मंत्री

अनुसधान अध्येता

राजा जीत

भूमिका


खनिज की कमी विश्वभर में फैली हुई है, परन्तु विशेष रूप से अनाज खाद्य आधारित देशों में है। ज्यदातर खनिज भोजन से निम्न स्तर पर विलिन रूप में अनाजों में उपस्थित होते हैं। गेहूँ विश्व में एक महत्वपूर्ण अनाज है। इसकी वार्षिक 650 मिलियन टन पैदावार होती है। यह विश्व की प्रतिदिन खाद्य आपूर्ति के लगभग 20 प्रतिशत है। यद्यपि गेहँ खनिज जैसे कि Fe, Zn, mg, K, Ca, Mn, Cu, S तथा P के रूप महत्व रखता है। कृषि संबंधित अन्य किरमों में प्रायः इससे संबंधित वन्य से कम खनिज समाहित होते हैं। उच्च उत्पन्न किरम के दानों में स्थानांतरण खनिजों में आंतरिक रूप से कम कुशल हो सकती है। सभी अनाजों में खनिजों का वास्तविक भाग गेहूँ के आटे के प्रसंस्करण में दौरान नष्ट हो जाती है। क्योंकि यह दाने के बाहरी भाग में मुख्यतः स्थित होते हैं, जिसे चोकर कहा जाता है। खनिज परिवहन, पृथक्करण तथा बीज उत्तक के ऊपर अध्ययन उत्तकों में उच्चतर खनिज संघटक के साथ अभिकल्पन किरमों हेत उपयोगी है। जिससे सफल दैनिक आहार प्राप्त किया जा सके। तात्विक स्थानीकरण के आणविक विवरण में समझने हेत् एल्युरोन की अपेक्षा भ्रूणपोष में खनिज तत्व प्रचुरता के साथ डिजाइन पोषणिक उन्नत फसलों के नए मार्ग द्वारा सुझाव दिया जाता है। इसलिए यह गेहूँ कृषिजोपजाति तथा सम्बन्धित जीनोटाइप्स में सभी खनिज तत्व हेत स्थानीकरण अध्ययन से वांछनीय है। यह कोन्स्ट्रासटिंग गेहूँ जीनोटाइप्स के विकसित दानों के उत्तकों के भीतर जीनों के स्थानिक अभिव्यक्ति तथा संसार में विभिन्नता का परीक्षण करना भी अत्यावश्यक है।

उद्देश्य

- गेहूँ तथा संबंधित जीनोटाइप्स के सभी मातृवंश एवं पुत्रीय गेहूँ उत्तकों में खनिजों के स्थानिक वितरण की जांच करना।
- गेहूँ के विकसित दानों में उत्तक विशिष्ट ट्रांसक्रिप्शन की जांच करना।
- 1. भ्रूणपोष से बाहरी चोकर से खनिजों के संग्रहण हेतु योजना तैयार करना।

अनुसंधान प्रगति

- माइक्रो—पीआईएक्सई तात्विक विश्लेषण दी गेहूँ कृषिजोपजाति (ट्रीटिकम, एस्टीवम सीवी, डब्ल्यूएच 291 तथा सीवीडब्लयूल 711) एक लेंडरेस (टी. एस्टीवम एल. आईआईटीआर 26) तथा गेहूँ से सम्बन्धित वन्य (एजिलोप्स कोट्सची एसीसी 3790) में मैक्रो (एमजी, पी, एस के तथा सीए) तथा माइक्रा (एमइ, जैडएन एमएन तथा सीयू) पोषण के उत्पादित मात्रात्मक वितरण नक्शों से दानों के अनुप्रस्थ खंडों पर पूर्ण किया था। चित्र 7 चार जीनोटाइप्स के प्रतिनिधि नमूनों के तात्विक वितरण नक्शों को प्रदर्शित करता है।
- पीयर्सन का दो मार्गी क्लसटेरिंग पी तथा जीनोटाइप्स में उत्तक विशिष्ट खनिज सह— स्थानीकृत के धनायन सम्बन्धित निश्चित पैटर्न के मध्य परस्पर सम्बन्ध गुणांक है। सह—स्थानीकृत का उच्चतम स्तर चार जीनोटाइप्स, पी—एमजी तथा पी—एफई द्वारा अनुसर्णित में पी तथा के हेतु

चित्र—7: ए. कोटसची, आईआईटीआर 26, डब्लयूएच 291 तथा डब्ल्यूएल 711 का प्रदर्शक दाना क्रॉस—सेक्शन के माइक्रो—पीआईएक्सई भावात्मक अंश वितरण नक्शे। यूजी जी—1 ड्राइमास ए—एल्युरोन, सीआर— क्रीज ईएम— एम्ब्रयोरिजन, ईएनल—भ्रूणपोष, पी—बाह्य उत्तक (फलभित्ति तथा बीज परत), एसीसीयू—एकुटेलम में एक तत्व केन्द्रीकरण छवि निरूपण से बार नेक्सट।

3. क्लस्टर विश्लेषण (सीए) ब्रे एवं कर्टिज दूरी/समान माप तथा समीपस्थ पड़ोसी क्लस्टरिंग विधि पर आधारित मुख्य अनाज उत्तकों (एल्युरोन, भ्रूणपोष, स्कुटेलम, इम्ब्रयो रिजन) में सभी मापे गए तत्त्व (एमजी, पी, एस,

A.kot	WL711	IITR26	WH291	r-s
-0.00%	0:117	5.077	-0.009	P-S
0.093	0.326	0.362	0.492	P-Cu
0.464	0.309	0.527	0.531	P-Ca
0.346	0.368	0.37	0.38	P-Mn
0.339	0.417	0.42	0.442	P-Zn
0.939	0 167	0.963	0.963	P-K
0.557	0.689	0.629	0.634	P-Fe
0.703	0.57	0.742	0.681	P-Mg
0.703	0.57	0.742	0.681	P.

चित्र—8: पीयर्सन के दो मार्गी क्लस्टरिंग द्वारा निमित हीट नक्शे बड़े अनाज उत्तकों (एल्यूरीन, स्कुटेलम, भ्रूणपोष तथा एम्ब्रयो रिजन) में यू—पीआई एक्सई डाटा उपयोग, परस्पर सम्बन्ध गुणांक (पी तथा अन्य खनिजों के मध्य सह—स्थानीकृत का चित्रण स्तर)

के सीए, एमएन, रफइ सीयू, जेडएन) के संकेन्द्रण उपयोग पर निष्पादित किया गया था। चार जीनोटाइप्स ज्यादातर समान (दूरी 0.112) के तौर पर डब्ल्यूएच 291 तथा डब्ल्यू 711 के साथ तीन क्लस्टरों में समूहित थे। लैंडरेस—आईआईटीआर 26 रूप एक पृथक क्लस्टर (दूरी 0.122) है तथा ए कोट्सची (दूरी 0.134) द्वारा अधिक दूरवर्ती क्लस्टर रूप है (चित्र 9)। एमजी, पी, एस, के, सीए, एफई, जेडएन, एमएन तथा सीयूक के माइक्रो—पीआईएक्सई सकेन्द्रण कलस्टिंग हेतु प्रतीकों के रूप में उपयोग किया जा सकता हैं।

4. एल्यूरोन एवं भ्रूणपोष के ट्रांसक्रिप्टम उच्च (आईआईटीआर 26) तथा निम्न (डब्ल्यूएल 711) खनिज जीनोटाइप्स में परीक्षित किए गए हैं। पृथक मेटल समूह, वहन तथा होम्योस्टासिस

चित्र—9 : क्लस्टर जांच हेतु ब्रे और कर्टिस डिस्टेंस/सिमिलरिटी मीजर और नियरेस्ट नेबर क्लस्टिरिंग तकनीक का उपयोग।

सम्बन्धित जीन दोनों जीनोटाइप्स में भ्रूणपोष से तुलना के रूप में एल्यूरोन में अप—रेग्युलेटिड पाई गई थी। कुछ जीन आईआईटीआर 26 में उच्च्तर स्तर पर अभिव्यक्त किए गए थे (तालिका 2)।

प्रमुख उपलब्धियाँ

- पृथक पोषणिक महत्वपूर्ण खनिजों के गुणात्मक स्थानीकरण तथा वितरण पटर्न का भौतिक प्रमाण टी. एस्टीवम तथा ए. कोट्सूची जीनोटाइप्स के अनाजों के संतानीय तथा मातुवंश उत्तकों में अन्वेषण किया गया।
- खनिजों के सेल्यूलर संकेत विविध फसल किस्मों में जैविक तथा कृषि सम्बन्धी भिन्नताओं से सम्बन्धित बायोमार्कर सम्भावित उपयोगी हो सकता है।
- मेटल ट्रांसपोर्ट, समूह तथा होम्योस्टासिस से सम्बन्धित पृथक प्रतिलेखन की विशिष्ट अभिव्यक्ति प्राप्त की गई है। आगामी विश्लेषण प्रगति पर है।

भावी परिप्रेक्ष्य

- उच्चतर स्तर पर गेहूं के दानों में खनिज संचयन हेतु जीनों व उम्मीदवार मार्गों की पहचान करना।
- विषाणुक रोगवाहक के माध्यम से जीन की क्रिया का वैधीकरण करना।
- भ्रूणपोष से बाहर चोकर से खनिजों के संघटन हेतु योजना का विकास करना।

The state of the s

तालिका 2: उच्च (आईआईटीआर-26) तथा निम्न (आईआईटीआर 26) अनाज खनिज संकेन्द्रण के साथ गेहूँ जीनोटाइप्स के एन्थेसिस के 14 दिनों के पश्चात एल्युरोन तथा भ्रूणपोष में पहचान किए गए मेटल होम्योस्टासिस जीनो की विशिष्ट अभिव्यक्ति।

Genes / Product Id	Reads Per Kilobase per Million reads (RPKM)							
Genes / Product id	Aleurone_IITR26	Aleurone_WL711	Endosperm_IITR26	Endosperm_WL71				
Metallothionein_Ta	3379.16	3149.639	549.124	428.3				
Wetallothionein_Hv1	590,766	0.000	0.000	0.0				
Metallothionein Xh	11.135	0.000	0.000	0.0				
Metallothionein like protein3_Hv	99.684	179.329	1,200	5.4				
Metallothionein Hv2	3.979		0.000	77				
Metal ion binding protein_Ta	4.176		0.000					
Ferritin	46,8833		6.3828					
metal tolerance protein 1_Bd	4.116	The Contract of the Contract o	0.000					
Metal tolerance protein5_Bd	6.903		0.000	W 000				
Metal tolerance protein5_Ta	4.653		0.000	75.00				
Metal tolerance protein7 Bd	70.989	200000000000000000000000000000000000000	4.992					
ron-sulfer protein_Zm	18.654	1000000	1.173	1.9				
Iron-sulfur assembly protein IscA-like 1_Hv	12.990	-	1.976					
the state of the s	-	and the second s	0.000	3.5				
Iron-sulfur assembly protein IscA-like 2_Bd	100000000000000000000000000000000000000	10000		- CAND				
ron-sulfer protein NUBPL_Bd Iron-sulfer cluster assembly protein ISCU_Bo	4.308 d 140.714		0.655 8.802	1.6				
	16.107	The second secon						
Zinc transporter_(ZIP4)_Ta Zinc transporter (ZIP1)_Ta			0.000					
	8.360		0.774	2.5				
Zinc transporter_(ZIPZ)_Bd	10.231 2.847			0.0				
Zinc transporter protein ZIP7_Hv		100000000000000000000000000000000000000	0.000	0.0				
Cadmium/zinc-transporting ATPase3_Bd	9.270		1.051	1000				
Cation diffusion facilitator transporter_Ta	11.005		0.848					
/acuolar iron transporter2_Bd	4.909	-	0.000	0.8				
/acuolar iron transporter5_Bd	3.420		0.000	0.0				
Nicotianamine sythase3_Ta	181.070		0.000					
Micotianamine synthase 5_Hv	6.2468		1.1033	A STATE OF THE PARTY OF THE PAR				
Nicotianamine aminotransferase_Hv	51.521		0.598	1700				
Nicotianamine transporter YSL2_Bd	23,902		4.614	8.9				
Nramp domain-containing protein_Ta	60.893	10000000	9.119	7.7				
Metal transporter Nramp1_Bd	1.130	-	0.000	0.1				
Metal transporter Nramp2_Bd	4.738		1.554					
Metal transporter Nramp3_Bd	50,320	-	2.728	1000				
Metal transporter Nramp4_Bd	0.922		0.106					
ntegral membrane protein NRAMP	17.365	The second second	0.000	1.4				
Magnesium transporter MRS2	23.855		0.000					
Membrane magnesium transporter 1_Bd	44.517		0.000	0.0				
Magnesium transporter NIPA2_TA	6.048		3.675	2.5				
Magnesium transporter NIPA2_Bd	1.571	TANK THE PERSON						
Magnesium transporter NIPA2_Bd	1.375							
Boron transporter4_Bd	8.429	Water Street Street	6.685	100000				
Boron transporter2_Bd	1.653	The second second	0.000					
Potassium transporter23_Bd	7.208	The second second	0.000	1 1000				
High-affinity potassium transporter_Ta	4.005		0.167	0.7				
Potassium transporter 17_Bd	6.751		3.397	10000				
Potassium transporter 13_Bd	2.558	The second secon		1.1				
Potassium transporter_Pa	1.796	100000000000000000000000000000000000000	7,007,000	10000				
ligh-affinity potassium uptake transporter_	2772	A CONTRACTOR	0.000	1000				
Potassium channel_Hv	6.493	and the second s	100000					
Potassium channel KAT3_Bd	2.046		0.000					
Potassium channel KOR2_Bd	3.090		0.361					
Potassium channel KOR2 like_Bd	3.090							
Copper-transporting ATPase PAA1_Bd	2.757							
Cation-chloride cotransporter1_Bd	10.319	13.934	4.106	2.7				

1.1.4 गेहूँ का सक्षम जैनेटिक रूपांतरण

प्रमुख अन्वेषक

सिद्धार्थ तिवारी

अनुसंघान अध्येता

अंशु आलोक हरसिमरन कौर

भूमिका

गेहूँ के प्रतिवेदक (जीयूएस—इंट्रोन) जीन के साथ सीधा बहुल भाूट मध्यवर्ती इन—विट्रो पुनर्सृजन एवं एग्रोवैक्टीरियम—मीडिएटिड जैनेटिक रूपांतरण के रूप में, कैलस हेतु पूर्वलेख की संभावना की गई है। अन्ततः सम्भावित पूर्वलेख वांछनीय विशेषकों के साथ स्थिर ट्रांसजेनिक प्लांट्स के उत्पादन हेतु उपयोग की जाएगी।

उद्देश्य

गेहूँ के जैनेटिक रूपांतरण पूर्वलेख की स्थापना करना।

अनुसंधान प्रगति

प्रतिवेदक (सीयूएस—इंट्रोन) जीन की स्थिर अभिव्यक्ति : प्रतिवेदक जीन की स्थिर अभिव्यक्ति द्रांसजेनिक पौधों के फ्लैग पत्तों पर नीले रंग के रूप में देखा गया था (चित्र 10ए)। ट्रांसजेनिक पौधों में जीनों के भविष्यसूचक 800 bp gusA ऐसे ही 1027 bp hptll अंशों के पीसीआर विश्लेषण प्रदर्शन विस्तार द्वारा आगामी परिणाम पुष्टि किया गया है (चित्र 10बी)।

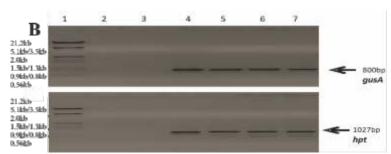
प्रमुख उपलब्धियां

प्रतिवेदक (जीयूएस—इंट्रोम) जीन की स्थिर अभिव्यक्ति हेतु एग्रोबैक्टीरियम मेडिएटिड जैनेटिक रूपांतरण इष्टतमीकरण या भावी परिप्रेक्ष्य। इष्टतमीकरण रूपांतरण पूर्वलेख वांछनीय विशेषकों के साथ ट्रांसजेनिक गेहूँ के उत्पादन तथा वैधीकरण हेतु औजार के रूप में उपयोग किया जाएगा।

1.1.5 गेहूँ को बौना रखने वाले भारतीय विषाणु का आणविक लक्षण वर्णन तथा विषाणु उत्प्रेरित जीन साइलेंसिंग (विग्रन) रोगवाहक का विकास तथा गेहूँ में जीन के कार्य के अध्ययन के लिए इसका अनुप्रयोग

प्रमुख अन्वेषक

राकेश तुली


अनुसधान अध्येता

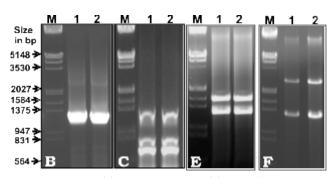
जितेन्द्र कुमार जितेश कुमार विष्णु शुक्ला शशांक सिंह

भूमिका

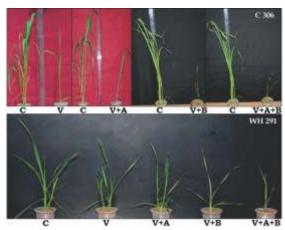
पौधा विषाणु रोगवाहक उन्मूलन (विग्स) तथा विषमजात जीन अभिव्यक्ति (विषाणु मध्यस्थ अधि—अभिव्यक्ति, वोक्श) हेतु महत्त्वपूर्ण औजार है। विषाणु रोगवाहक पौधों जैसे कि गेहूँ (ट्रीटीकम एस्टीवम) हेतु विशेषकर लाभदायक है। जो बड़े एवं जटिल जीनम है जो रूपांतरण से विरोधात्मक है, जि सके मूटाजेनिक, टी—डीएनए नॉकआऊट

चित्र—10 : ट्रांसजेनिक पौधों में जीयूएस का पीसीआर विश्लेषण तथा स्थिर अभिव्यक्ति। (ए) ट्रांसजेनिक पौधों में फ्लैग पत्तों में हिस्टोकेमिकल्स विश्लेषण प्रदर्शन की यूएस अभिव्यक्ति। (बी) जीनोम में ट्रांसजेनिक पौधे प्रदर्शक ट्रांसजींस संघटन का पीसीआर विश्लेषण। लेन 1 : लाम्बड़ा डीएनए हिंद III एवं इको आर I डाइजेस्ट, लेन 2: टेम्पलेट रहित (डीएनए), लेन 3 : अनट्रांफार्मड प्लांट, लेन 4: पोजिटिव कंट्रोल (pCAMBIA0301 वेक्टर), लेन 5—7 : gusA जीन से ट्रांसजेनिक पौधे प्रदर्शक 800 bp एम्प्लीकन तथा hptII जीन का 1027BP एम्प्लीकन।

लाइबारिज, टी—डीएनए अथवा ट्रांसयोजन जीन टेगिंग तथा आरएनआई के रूप में कार्यात्मक जीनोमिक्स टूल्स के उपयोग की सीमा है। वीआईजीएस गेहूँ में इसके प्रत्याशी जीनों के संभवतः गित विशेषता के कारण महत्वपूर्ण है। लक्षित प्रतिलेखन पोस्ट ट्रांसक्रिप्शन जीन—साइलेंसिंग (पीटीजीएस) द्वारा निम्नीकत है। विग्स विशिष्ट जीनों में पहचान परिवर्तन से स्क्रीनिग वृहत जनंसख्या हुत ओविएट्स की आवश्यकता तथा एकल उत्पादन में निर्दिष्ट जीनक कार्य को वैध किया जा सकता है। विधि के तौर पर, इसकी स्थिर ट्रांसजेनिक पौधों के उत्पादन वांछित नहीं है। परियोजना का उद्देश्य गेहूँ हेतु उन्मूलन (विग्स) तथा अभिव्यक्ति (वोक्श) हेतु अच्छे विषाणु रोगवाहक को विकसित करना है।


उद्देश्य

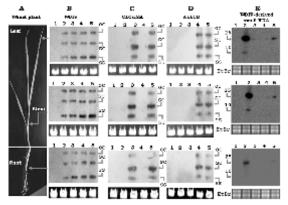
- 1. भारत में जटिल डब्ल्यूडीआईवी बीमारी के प्रचलन एवं विस्तार की जांच करना।
- विग्स रोगवाहक का विकास एवं वैधीकरण तथा इसका जीनों से संबंधित लौह बायोसिंथेसिस के


प्रकार्यात्मक निर्धारण हेतु ओग उपयोग करना अनुसंधान प्रगति।

अनुसंधान प्रगति

- 1. गेहूँ से डब्ल्यूडीआईवी संबंधित, सैटेलाइट की विशेषता एवं खोजः सबजीनोमिक उपकरणों अथवा सैटेलाइट की उपस्थिति में जांच की गई डब्ल्यूडीआईवी हेतु गेहूँ के नमूने ग्रसित पाए गए हैं। दो प्रकार के सैटेलाइट खोजे गए जबकि डब्ल्यूडीआईवी ग्रस्त गेहूँ नमनों से बीगोमोवायरस की पहचार नहीं हुई। (चित्र 11)।
- 2. विषाणु द्वारा प्रवेश रोगलक्षण पर अल्फा एवं बीटा सैटेलाइट के प्रभाव का मूल्यांकन : विषाणु रोगलक्षण प्रवेश प्रक्रिया पर सैटेलाइट के प्रभाव के निर्धारण हेतु फीनोटाइप अवलोकित किया गया था। पौधे अकेले विषाणु से तुलना में सैटेलाइट की उपस्थिति में प्रदर्शित अधिक बौनापन अवलोकन किया गया (चित्र—12)।
- 3. डब्ल्यूडीआईवी तथा डब्ल्यूडीआईवी-

चित्र 11: वीटा सैटेलाइट एवं अल्फा सैटेलाइट हेतु विस्तार



चित्र—12 : 42 दिनों के बाद संचरण में एग्रोइनोक्युलेटिड गेहूं पौधे। सी =मॉक इनोक्युलेटिड, बी = विषाणु ग्रस्त क्लोन तथा वी +ए+बी = विषाणु + अल्फा + बीटा सैटलोइट इंफेक्सियस क्लोन इनोक्युलेटिड गेहूं पौधे।

निर्दिष्ट लघ् आरएनए संचयन पर अल्फा एवं बीटा सैटेलाइट के प्रभाव का मूल्यांकनः गेहं के भीतरी भाग में विषाण संचयन पर सैटेलाइट के प्रभाव निर्धारण से दक्षिणी संकरण। विषाणु का संचयन सैटेलाइट की उपस्थिति में उच्च पाया गया था (चित्र-16)। विषाण् निर्दिष्ट छोटे आरएनए का उत्पादन विषाणुओं के विरूद्ध रक्षा पौधा है। विषाणु तथा सैटेलाइट इन्कोडेड ओआरएफ का उन्मूलन प्लांट साइलेंसिंग मशीनरी से प्रदर्शित साइलेंसिंग उन्मूलक गतिविध है। उतरी संकरण डब्ल्यूडीआईवी-निर्दिष्ट छोटे आरएनए के आगमन संचयन से निष्पादित किया गया था, जो प्रदर्शित करता है कि डब्ल्युडीआईवी-निर्दिष्ट छोटे पौधे आरएनए का संचयन डब्ल्यूडीआईवी तथा सैटेलाइट के साथ पौधे संचारित करने में कम था (चित्र—13)

- 4. माइक्रोएरी विश्लेषण उपयोग में गेहूं के पौधे जीन अभिव्यक्ति पर संबंधित सेटेलाइट का प्रभाव निर्धारणः माइक्रोएरी का विश्लेषण अभिव्यक्ति प्रकट करती है कि कई यूनिजींस इसके अभिव्यक्ति लागत द्वारा 5—परतों की अपेक्षा अधिक विनियमित एवं निम्न विनियमित किए गए थे। बीटा सैटेलाइट की उपस्थिति में विषाणु के जी विनियमन पैटर्न को समर्थित किया गया, जबिक अल्फा सैटेलाइट यूनिजींस का पृथक सैट विनियमित किया गया।
- 5. देश में डब्ल्यूडीआईवी का प्रचलन : देश के विभिन्न हिस्सों में डब्ल्यूडीआईवी द्वार उत्पन्न होने वाली गेहूं में बीमारियों के प्रभाव एवं प्रचलन की जांच हेतु एक सर्वे किया गया। 0-9 के विभिन्न पैथोजेनेसिटी स्केलों पर गेहूं के पौधे

चित्र—13: एग्रो इनेक्यूलेटेड गेहूं पौधा(ए) में डब्ल्यूडीआईवी (बी), अल्फासैटेलाइट (सी) तथा वीटा सैटेलाइट (डी) के परिमाणन आधारित उत्तरी संकरण। कोट प्रोटीन जीन गेहूं के पौधे (जड़, तना एवं पत्ते) के विभिन्न भागों के जांचे गए विषाणु संचयन की अन्वेषी भालाका के रूप में उपयोग किया गया था। गेहूं के पौधे (ए) के विभिन्न भागों में डब्ल्युडीआईवी—निर्दिष्ट छोटा आरएनए (ई) का संचयन।

विभिन्न लोकेशनों में पाए गए थे (तालिका—3)। डब्ल्यूडीआईवी की बड़ी उपस्थिति का सर्वे के आधार पर निष्कर्ष निकला गया है। सैटेलाइटों के संगुणन सभी लोकेशनों पर पाया गया था।

6. उत्पादकता के साथ पैथोजेनेसिटी स्केल का परस्पर सम्बन्ध : टिलरों की संख्या बीमारी स्केल 8–9 से कम था। बाल की लम्बाई भी स्केल 8–9 से कम हुई थी (तालिका–2)। सार्थक रूपांतरण पृथक बीमारी स्केलों पर टीकेडब्ल्यू में देखा गया था। स्केल 0 पर टी के डब्ल्यू 44 जी (± 5 जी) तथा उच्चतर बीमारी स्केल पर 35 ± 4 जी से क्रमशः ह्वास हुआ था (तालिका–4) अनाज रचना स्केल 8–9 पर बाली में शून्य थी (तालिका–4)।

तालिका 3 : नमूने एकत्रीकरण के भौगोलिक समानाधिकरण, ग्रसित गेहूं के पौधों तथा क्षेत्र में गंभीर बीमारी का प्रतिशत।

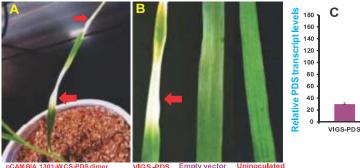
क्र स	Centre of sample collection	Geographical co-ordinates	No. of plants in 10 Sq. Ft.	No. of infected plants in 10 Sq. Ft.*	Incid- ence (%)	No. of sample collected	No. of sample found positive**	Positive sample (%)	Prevalence (%)	Patho- genicity scale found	
	Average of 5 locations										
1.	मोहाली	30° 47' North; 76° 41' East	261	35	13.4	317	263	82.9	10.9	1 to 8	
2.	मेरठ	28° 58' North; 77° 42' East	240	26	10.8	67	59	88	9.5	2 to 6	
3.	कानपुर	26° 45' North; 80° 31' East	246	28	11.3	30	23	76.6	8.6	2 to 6	

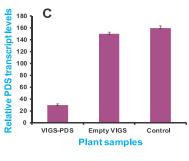
Of All all all
A STREET
FIRESTE

S. No.	Centre of sample collection	Geographical co-ordinates	No. of plants in 10 Sq. Ft.	No. of infected plants in 10 Sq. Ft.*	Incide nce (%)	No. of sample collect ed	sample	sample (%)	Prevale nce (%)	Pathogen icity scale found
			Average							
			location	S						
4.	गुरदासपुर	29° 45' North;	275	23	8.3	24	18	75	6.2	2 से 5
		75° 66' East								
5.	समस्तीपुर	25° 80' North;	253	36	14.2	40	36	90	12.7	2 से 8
		85° 67' East								
6.	हाजीपुर	25° 68' North;	270	29	10.7	20	17	85	9.1	1 से 3
		85° 22' East								
7.	बिलासपुर	22° 4' North;	244	20	8.2	45	33	85.1	6.9	2 से 6
		82° 9' East								
8.	जगदलपुर	20° 37' North;	236	23	9.7	40	28	70	6.7	1 से 5
		81° 35' East								
9.	वेलिंगटन	11° 22' North;	233	45	19.3	78	71	91	17.5	1से 9
		76° 47′ East								
10.	पुणे	18° 6' North;	237	26	10.9	75	70	93.3	10.1	1 से 7
		74° 18′ East								
11.	इंदौर	22° 43' North;	242	38	15.7	60	54	90	14.1	2 से 9
		75° 49′ East								
12	भोपाल	23° 12' North;	247	22	8.9	20	15	75	6.6	1 से 4
		77° 27′ East								
13.	उदयपुर	24° 34' North;	251	28	11.1	77	55	71.4	7.9	1 से 9
		73° 38' East								
14.	जयपुर	26° 5' North;	245	36	14.6	70	50	71.4	10.4	1 से 8
		75° 47' East								
15.	Average ac	ross India	248.5	29.6	11.9	68.7	56.5	81.7	9.8	1 से 9

तालिका 4: उत्पादकता ट्रेटो के साथ पैथोनेनिसिटी स्केल का परस्पर सम्बन्ध।

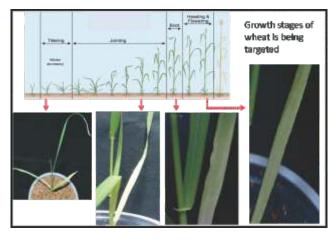
S.	Pathoge	thoge No. of No. of % Prevalen Average of 10 in					ge of 10 independent observations			
No.	nicity scale	plants collected	virus positive plant	positive plants	ce at scale (%)	No. of tillers /plant	ears/	Length of ear	Total grain weight/ plant	Thousand grain weight
1.	8 से 9	15	14	93.3	1.4	5 - 6	5-6	5 - 8 cm	No grain	No grain
2.	5 से 7	136	127	93.3	13.5	8 - 15	8 - 15	7 - 10 cm	8 - 15g	35g± 4g
3.	3 से 4	360	333	92.5	35.5	6 - 13	6 - 13	7 - 10 cm	11 - 26g	41g± 4g
4.	1 से 2	452	315	69.7	33.6	5 - 15	5 - 15	8 - 12 cm	12 - 37g	41g± 4g
5.	0	42	2	4.7	NA	5 - 16	5 - 16	8 - 14 cm	13 - 39g	44g± 5g


^{*}दिखाई देने वाले लक्षणों के आधार पर ग्रसित नमूने का अनुमान लगाना। **डब्ल्यूडीआईवी निर्दिष्ट के उपयोग से — 2.8 केबी पीसीआर खंड के विस्तार के आधार पर ग्रसित पाए गए नूमने।



- 7. रुपांतरित विषाणु जीनोम द्वारा विग्स रोगवाहक का विकासः न्यूक्लोटाइड के एक लघु प्रसार को हटाने द्वारा विषाणु जीनोम तथा समान स्थानों पर बहुल क्लोनिंग साईट्स (एमसीएस) को संलग्न करना।
- 8. विजुअल मार्कर जीन के साइलेंसिंग द्वारा विग्स रोगवाहक का वैधीकरणः गेहूं से फायटोन डेसचर्स जीन (पीडीएस) का विस्तार क्लोंड व अनुक्रम किया गया था। यह विग्स रोगवाहक में संलग्न किया गया था। सफल साइलेंसिंग में विग्स—पीडीएस निर्मित परिणाम के साथ पत्तों के उत्तकों का एग्रोइनोक्येलेशन (चित्र—14)।

विभिन्न विकास की स्टेजों में पीडीएस जीन की साइलेंसिंग गेहूं में विभिन्न विग्स निर्माणों के साथ इष्टतमीकरण के तौर पर है (चित्र—15)। विभिन्न विकास स्टेजों में रोगवाहक के निर्मित प्रदर्शक अच्छी साइलेंसिंग गतिविधियों का फायदे के जीन के साइलेंसिंग हेतू उपयोग किया जाएगा।


10. गेहूं में जीनों से संबंधित लौह पोषण के अध्ययन कार्य हेतु डब्ल्यूडीआईवी— विग्स रोगवाहक की उपयोगिताः प्रत्याशी जीन साहित्य से तथा ट्रांसक्रिप्टोमिक्स डाटा से भी छंटनी किया गया है। दो प्रत्याशी जीनों के साइलेंसिंग बीज विकास में प्रगति पर हैं। गेहूं के बीज विकास में सन्निविष्ट

चित्र—14: पैनल एः पृथक विग्स—पीडीएस निर्मित संचारण गेहूं के पौधों का आशिक प्रदर्शन। पैनल बी: विग्स'—पीडीएस, खाली विग्स—रोगवाहक संचारण तथा गैर संचारण गेहूं के पौधों के छोड़ने के मध्य तुलना। पैनल सी: सम्बन्धित पीडीएस प्रतिलेखों के विस्तार आधारित वास्तविक समय पीसीआर।

 गेहूं की विभिन्न विकास की स्टेजों में साइलेंसिंग का इष्टतमीकरणः गेहूं की संक्रमण से विकास के रूप में विधि है।

चित्र-15 : गेहूं की विभिन्न विकास स्टेजों में पीडीएस जीन की साइलेंसिंग।

प्रमुख उपलब्धियाँ

- हमने सबसजीनोमिक उपकरणों (सैटेलाइटों)
 के सम्बन्ध तथा नवीन जीनोम संगठन के साथ
 एक नवीन मास्ट्रीवायरस की खोज की है।
 हमने प्रथम समय के लिए एक मास्ट्रीवायरस के
 साथ सैटेलाइटों के संबंध की खोज की है।
 विषाणु बीमारियों की वृद्धि में संबंधित
 सैटेलाइटों की भूमिका का प्रलेखन किया गया
 था।
- डब्ल्यूडीआईवी जीनोम गेहूं में प्राप्त एक अच्छे साइलेंसिंग से अनुक्रम में रूपांतरित किया गया था।

भावी परिप्रेक्ष्य

- सैटेलाइट संक्रमणों तथा डब्ल्यूडीआईवी पर अपरेगुलेटिड तथा डाऊनरेगुलेटिड प्रतिलेखन की प्रकार्यात्मक व्याख्या करना।
- गेहूं में प्रकार्यात्मक जीनोमिक्स के लिए डब्ल्यूडीआईवी—विग्स रोगवाहक की उपयोगिता तथा गेहूं की विभिन्न विकास की स्टेजों में साइलेंसिंग का इष्टतमीकरण।

1.2 गेहूं में पोषणिक गुणवत्ता तथा प्रसंस्करण के गुणवत्ता सुधार के लिए त्वरित प्रजनन

प्रमुख अन्वेषक मोनिका गर्ग

अनुसंघान अध्येता

रोहित कुमार अमन कुमार

भूमिका

विकसित देशों में अनाज मंडी गेहूं की गुणवत्ता से चलती है। गेहूं की विशेष श्रेणी / ग्रेड उत्पादन के प्रक्रमण एवं उसकी प्रयोक्ता गुणवत्ता के आधार पर दिया जाता है। प्रत्येक उत्पाद किस्म के लिए वैध मानदंड सूचक उपलब्ध है तथा इन्हें नियमित प्रयोग में लाया जा रहा है। भारतीय फसलें कृषि जलवायु क्षेत्र, बीजने के समय एवं मृदा उर्वरकता के आधार पर जारी की जाती है। एक प्रमुख उत्पाद चपाती के लिए वैध मार्कर उपलब्ध नहीं है। उपलब्ध वैध मार्करों को भी प्रयोग में नहीं लाया जा रहा है। भारत में प्रक्रमण

गुणवत्ता (पिसाई एवं पकाने संबंधी विशेषताएं) के आधार पर फसलों के प्रजनन, मार्करों के विकास एवं वैध मार्करों के प्रयोग की आवश्यकता है। गेहं की प्रक्रमण गुणवत्ता खेतों से प्राप्त बीजों एवं अन्य घटकों तथा प्रोटीन, स्टार्च, बिना स्टार्च वाले कार्बोहाइड्रेट एवं वसाओं पर निर्भर करती है। प्रक्रमण गुणवत्ता में प्रोटीन का महत्व सर्वविदित है। प्रोटीन की मात्रा एवं किरम ब्रेड, बिस्किट, केक, चपाती एवं नूडल्स आदि जैसे अंतिम उत्पादों की गूणवत्ता को निर्धारित करती है। बिस्किट बनाने में कम प्रोटीन मात्रा वाले नरम गेहूं एवं विभिन्न एलैलीस (उच्च आण्विक भार के 2 +12 एलैलीस) ग्लुटेनिन सुबुनिट जीन (एचएमडब्ल्यू-जीएएस) की क्रोमोसोम आईडी (प्यूरोइोलाइन जीन आदि का Locus, Glud1), Pina-Dla. Pinb-Dla एलेलीस) आदि की आवश्यकता होती है। ब्रैड बनाने में उच्च प्रोटीन मात्रा के ठोस गेहं एवं विभिन्न एलैसीस Glud1- HMW GS, Pina- D1b, Pinb-Dia/b अदि के 5+10 एलैलीस) की जरूरत होती है। चपाती बनाने में विभिन्न जीन / एलैलीस के योगदान की बहुत कम जानकारी है। यह विभिन्न बीज संघटकों की संरचना एलैलीस रूपांतरण तथा प्रभाव पैटर्न को समझने के लिए महत्वपूर्ण है।

उद्देश्य

- उन्नत प्रसंस्करण गुणवत्ता के साथ प्रजनन सामग्री का उत्पादन।
- 2. प्रमुख बीज घटकों, स्टार्च, प्रोटीन व लिपिड़स प्रभावित प्रसंस्करण गुणवत्ता के प्रभाव पैटर्न तथा संरचना का अध्ययन।

अनुसंधान प्रगति

- 1. प्रसंस्करण गुणवत्ता सुधार हेतु त्वरित प्रजनन
- (i) चपाती की गुणवत्ता के सुधार हेतु पुरानी कृषिजोपजाति से बनी अच्छी चपाती उच्च पैदा होने वाली वर्तमान कृषिजोपजातियों (पीबीडब्ल्यू 343, पीबीडब्ल्यू 550 तथा पीबीडब्ल्यू 621) के साथ पार कर गई थी। बीसी3 का Fe3 बीज तथा अन्य संकरण (तालिका 5) नाबी पर बोया गया था तथा लगभग 600 मोर्फोलॉजिकलि चयनित पौधे जीबीएसएस 1बी की अनुपस्थिति के लिए बाद

में तथा लिंकड मार्कर डब्ल्यूएमसी 313 द्वारा प्रथम जांच की गई थी। नकारात्मक पौधे को मार्फोलॉजिकलि उच्च पौधों के लिए जांच किया गया था। चयनित लाइनें / पौधे पृष्ठभूमि जांच तथा उत्पादन उन्नति क विषय होगा।

(ii) बिस्किट निर्माण गुणवत्ता के सुधार हेतु उच्च उत्पन्न होने वाली वर्तमान कृषिजोपजातियों (पीबीडब्ल्यू 343, पीबीडब्ल्यू 550, पीबीडब्ल्यू 621 तथा एचडी 2967) के साथ दाता लैंडरेसिज क्रोसिज किया गया था। विभिन्न क्रॉसिज के एफ3 बीज (तालिका 6) नाबी पर बोया गया था तथा लगभग 1150 मोर्फोलॉजिकलि चयनित पौधे प्यूरोइंडोला— इनजीन Pina Dla की उपस्थिति पर आधारित उन्नति का विषय होगा।

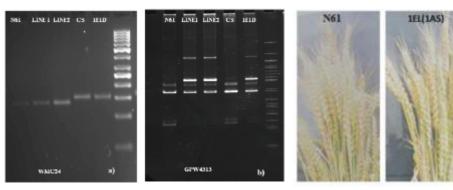
(iii) ब्रैड निर्माण गुणवत्ता में सुधार के लिए Ae. elongatum, Ae. longissima, Ae. searsit तथा intermedium की जंगली स्थानों के जैनेटिक भंडार का उच्च उत्पन्न होने वाली कृषिजोपजाति (पीबीडब्ल्यू 550, पीबीडब्ल्यू 621 तथा एचडी 2967) के साथ क्रॉस्ड किया गया है। हमारा उद्देश्य गेहूं (ट्रांसलोकेशन लाइन्स) के क्रोमोसोम 1ए से एचएमडब्ल्यू—जीएस जीनों से हस्तांतरण करना है, क्योंकि बाद वाली किस्म में कुछ एलैलीस है जो ब्रैड निर्माण गुणवत्ता पर बुरा प्रभाव डालते हैं। जीनेटिक सामग्री (संकलन, प्रतिस्थापन तथा ट्रांसलोकेशन लाइन्स) बीजों

तालिका 5 : गुणवत्ता वाली अच्छी चपाती हेतू BC3 एवं अन्य के F3 पीधे / लाइनों का जांच एवं चयन।

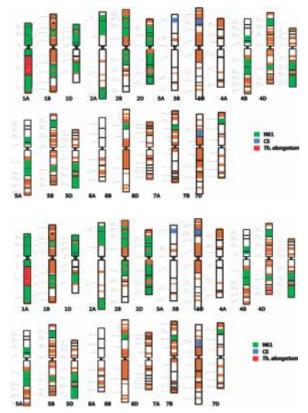
Cross	No. of Homozygous lines	No. of Homozygous Plants
C3333	2	11
5C555	-	6
5C5HH	-	1
6C666	1	15
C6666	-	2
3L333	-	2
L33HH	-	3
6L666	-	1
6L6HH	2	-

Where 3-PBW343, 5-PBW550, 6-PBW621, H-HD2967, C-C306, L-LOK1

की गई। सकारात्मक पौधे मोर्फोलॉजिकलि उच्च पौधे के लिए जांच किए गए थे। चयनित लाइनें / पौधे पृष्ठभूमि की जपंच तथा उत्पादन


के आधे भ्रूणपोष से प्रोटीन भंडार का सोडियवम डोडेसाइल सल्फेट—पॉलिक्रालामाइड जैल इलेक्ट्रोफोरेसिस (एसडीएस—पीएजीई) द्वार

तालिका 6: अच्छे बिस्किट निर्माण गुणवत्ता हेतु विभिन्न क्रॉसिज के एफ3 पौधों / लाइनों की जांच एवं चयन।


Cross	No. of Homozygous lines	No. of Homozygous Plants
I3333	1	34
3I333	-	4
I5555	-	3
I55HH	1	13
51555	-	14
I6666	-	13
I66HH	1	10
6I6HH	-	1

जांच किया गया था। चयनित सामग्री की क्रासिंग / बैकक्रॉसिंग प्रगति पर है। जैपेनिज कृषिजोपजाति नोरिन 61 की पृष्टभूमि में क्रोमोसोम 1ए अर्थात 1डब्ल्यू (1 एएस) के भॉर्ट आर्म से Ag. elongatum अर्थात क्रोमोसोम 1इ ट्रांसलोकेटिड के लॉग आर्म की क्रोमोसोम निर्दिष्ट ट्रांसलोकेशन लाइन इस अध्ययन के

दौरान उत्पादित की गई थी। यह लाइन प्रदर्शक उन्नत सन्ना हुआ आटे की दृढ़ता ग्लूटन इंडेक्श तथा ब्रैड निर्माण गुणवत्ता। बीसी3 एफ 4 (लाइन 1) तथा बीसी 4 एफ3 (लाइन 2) ट्रांसलोकेशन लाइन १इएल (१एएस) की माइक्रोसैटेलाइट आधारित पृष्ठभूमि जांच प्रगति पर है (चित्र 16 एवं 17)।

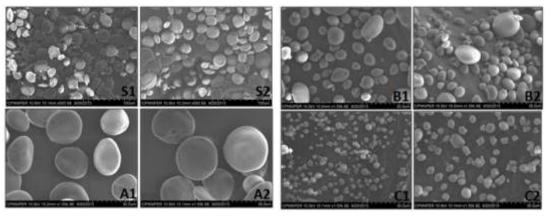
चित्र—16: बीसी3 एफ4 (लाइन 1) तथा बीसी4 एफ3 (लाइन 2) 1 ईएल (1 एएस) ट्रांसलोकेशन लाइन्स की माइक्रोसैटेलाइट आधारित पृष्टभूमि जांच ए) पृष्टठभूमि कृषिजोपजाति एन 61 (बी) Th. elongatum के पैटर्न को प्रदर्शित करता है। ट्रांसलोकेशन लाइन (डी) पृष्ठभूमि कृषिजोपजाति एन61 (सी) से समान मोर्फोलॉजिकलि थी। सीएस—चाइनिज स्प्रिंग (दाता कृषिजोपजाति) तथा प्रतिस्थापन लाइन 1इ (1डी) की जांचने के लिए उपयोग किया गया था।

चित्र—17: 1 इएल (१एएस) ट्रांसलोकेशन लाइन का स्कीमेटिक माइक्रोसैटेलाइट मार्कर आधारित मैप। दाता कृषिजोपजाति सीएस तथा तथा प्रापक कृषिजोपजाति एन 61 था।

कुल 287 एसएसआर मार्कर को ट्रांसलाकेश लाइन 1 इएल (1 एएस) के बीसी3 एफ4 (लाइन 1) तथा बीसी 4 एफ 3 (लाइन 2) पौधों में ट्रांसलोकेशनों की पहचान एवं पृष्टभूमि की जांच हेत् उपयोग किया गया था। जिसमें से 64 मार्कर पॉलिमोर्फिक पाए गए थे। ज्यादातर पॉलिमोर्फिक मार्कर तीन बैक क्रॉस के पश्चात अच्छी पृष्ठभूमि प्राप्त एन ६१ पैटर्न (तालिका १ चित्र 1) अंकित होते प्रदर्शित हुए हैं। क्रोमोसोम 1ए क लॉग आर्म पर चार मार्कर Th. elongatum ट्रांसलोकेशन की उपस्थिति के प्रदर्शित पैटर्नों की ओर संकेत करते हैं। यह बीएआरसी 83, डब्ल्यूएमसी 469, बीएआरसी 17 तथा डब्ल्यूएमसी 312 थे। मार्कर डब्ल्यूएमसी ४६९ एचएमडब्ल्यू-जी लोक्स के समीप उपस्थित था। अन्तरालीय ट्रांसलोकेश के एसएसआर मार्कर डाटा अंकित उपस्थिति, बल्कि सभी आर्म ट्रांसलोकेशन की अपेक्षा, लिंकेज ड्राग में ह्यस के कारण पहले की अपेक्षा बेहतर थी।

भारतीय गेहूं कृषिजोपजातियों के कोमल अनाज संबंधित जीन (प्यूरोइंडोलाइन) हेतु डाटाबेस का विकास :

प्यूरोइंडोलाइन (पीआईएनएस) निर्धारित गेहूं के अनाज संरचन से महत्वपूर्ण प्रोटीन है तथा यह भीर्ष उत्पाद गुणवत्ता है। प्यूरोइंडोलाइन जींस (पीआईएनए तथा पीआईएनबी) इनकोडिंग यह प्रोटीन गेहं के क्रोमोसोम 5डी के भार्ट आर्म पर कठोर स्थान में होता है। हमने अनाज संरचना पर विभिन्न एलेलिक रूपातंतरण के प्रभाव को समझने के उददेश्य के साथ भारतीय गेहूं कृषिजोपजातियों में प्यूरोइंडोलाइन जीनों के जीनेटिक विविधता की भी जांच की है। भारतीय गेहूँ कृषिजोपजाति (९१.५ प्रतिशत) प्रदर्शित गेहूँ संरचना का अधिक मात्रा में फीनोटाइपिकलि। यह कठोर कृषिजोपजाति वर्गीकरण के भारतीय प्रणाली द्वारा बेहतर वर्गीकरण किया गया था। जीनोटाइपिकलि कठोर संरचना कृषिजोपजाति दस विभिन्न पैटर्नों में प्रदर्शित


तालिका 7: भारतीय गेहूँ कृषिजोपजातियों में प्यूरोइंडोलाइन जीनों का एलेलिक रूपांतरण

S. No.	Pina allele	Pinb allete	No. of cultivars/ percentage	Nucleotide mismatch position/	Amino Acid (AA) mismatch position/AA base change	Hardness (in SKCS Units)	Functional Change
1	Pina-D1a	Pinb-D1a	7/8.5%	Wild type	Wild type	21 - 36	No
2	Pina-D1b	Pinb-D1a	53/64.6%	Null allele	Null allele	70 -101	Yes
3	Pina-D1a	Pinb-D1b	8/ 9.7%	223/ G to A	46/ Gly to Ser	58 -84	Yes
4	Pina-D1a	Pinb-D1e	6/ 7.3%	204/ G to A	39/ Trp to stop	59- 82	Yes
5	Pina-D1a	Pinb-D1r	1/1.2%	Insertion 127/G	Frame shift and stop codon at 48	76	Yes
6	Pina -D1w	Pinb-D1b	1/ 1.2%	41/ C to T (Pina)	(-) 15/ Ala to val (Pina)	76	No
7	Pina -D1x	Pinb-D1b	1/ 1.2%	65/ G to C 86/ A to G	(-) 7/ Ser to Th 1/ Asp to Gly	57	?
8	Pina-D1a	Pinb -D1ad	1/ 1.2%	92/ T to C	2/ V to A	78	No
9	Pina-D1b	Pinb -D1ae	1/ 1.2%	93/ T to A	No change	87	No
10	Pina-D1b	Pinb -D1af	2/ 2.4%	232/ G to T	49/ Glu acid to stop	76, 81	Yes
11	Pina-D1b	Pinb -D1ag	1/ 1.2%	371/ T to C9	5/ Leu to Pro	95	No

किए गए है (तालिका 7) गैर कार्यात्मक Pina D1B तथा कार्यात्मक Pinb D1a के पैटर्न के साथ अधिकतम सामान्य (64.6%) तथा कठोरतम होती है। भारतीय कृषिजोपजाजि की कठोर संरचना कार्यात्मक Pina D1a तथा Pina D1a एलेलिस में से.

एमिलोपेक्टिन की ग्लुकन चेनों की भाखाएं नियमित अवधि क साथ प्राप्त होती है तथा इसकी लम्बाई तथा पैटर्न स्टार्च कणिका तथा इसकी संपत्तियों के उचित निर्माण हेतु पेचीदा है। गेहूँ के अनाज विकास के दौरान स्टार्च कणिकाओं के तीन प्रकारों, ए—प्रकार कणिका

चित्र—18: कुल स्टार्च, कोमल गेहूँ आईआईटीआर 67 (एस1, ए1, बी1, सी1) तथा कठोर गेहूँ सी306 (एस2, ए2, बी2, सी2) के ए—कणिकाएं, बी—कणिकाएं तथा सी—कणिकाओं का एसईएम चित्र

असामान्य Pina D1e एलैले 7.3% कृषिजोपजातियों में अवलोकित किया गया था। छह नए पिन ऐलिसस विभिन्न अध्ययनों के दौरान पहचान एवं नामित किया गया है। Pina से संबंधित इन छह में से दो, जिनके नाम Pinb-Dlad, Pinb-Dlae, Pinb-Diaf तथा Pinb-Diag के रूप में नामित किया गया है। न ए ऐलिलस Pinb-Dlaf में से जीन का कार्यात्मक परिवर्तन में परिणाम है।

3. कोमल एवं कठोर गेहूँ कृषिजोपजातियों में स्टार्च किणकाओं की सूपरमोलिक्यूलर संरचना तथा फिजिओकेमिकल्स संपत्ति का अध्ययनः स्टार्च गेहूँ के दानों में भ्रूणपोष में बड़े रूप में कार्बोहाइड्रेट से निर्मित होता है तथा जो भोजन, फाइबर, जैव इंधन तथा बायोपॉलिमर का बड़ा स्रोत है। दाना विकास के दौरान, स्टार्च को पृथक अर्द्ध क्रिस्टलाइन के रूप में भ्रूणपोष में जमा होता है, जिसे स्टार्च किणका के नाम से जाना जाता है। यह दो ग्लूकोज पॉलिमिर्स का मिश्रण है, जिसे एमलोस एवं एमिलोपेक्टिन कहा जाता है।

(डायमीटर > 9.9um), बी-प्रकार कणिका (डायमीटर <9.9um) तथा सी-प्रकार कणिका (डायमीटर <5 um) में जमा होता है। गेहँ में स्टार्च के मल्टी मॉडल आकार वितरण की अधिक मात्रा है क्योंकि स्टार्च कणिका के प्रत्येक प्रकार की फिजियोकेमिस संम्पत्तियां बहुत है तथा स्टार्च के खाद्य एवं औद्योगिक उपयोग में योगदान देता है। स्टार्च की कोमल (आईआईटीआर 67) तथा कठोर (सी 306) गेहूँ लाइन्स से भाद्ध किया गया था। स्टार्च की भाद्धता लाइट माइक्रोस्कोप द्वारा जाँच की गई थी। कुल स्टार्च के एमलोस संघटक का अनुमान आईआईओआर 67 सम्मिलित 26% तथा सी 306 सम्मिलित 24% एमलोस अंकित किया गया है। कठोर एवं गेहूं लाइन्स से कुल स्टार्च ए, बी तथा सी प्राकर की कणिकाओं की एसईएम चित्र प्रदर्शित करते हैं कि कणिकाओं की गोल आकृति में नियमितता क्रम ए < बी < सी में कम हुआ है। (चित्र 18)। स्टार्च कणिकाओं के विभिन्न कणिकाओं के भीतर तथा कठोर तथा कोमल गेहूँ के मध्य में

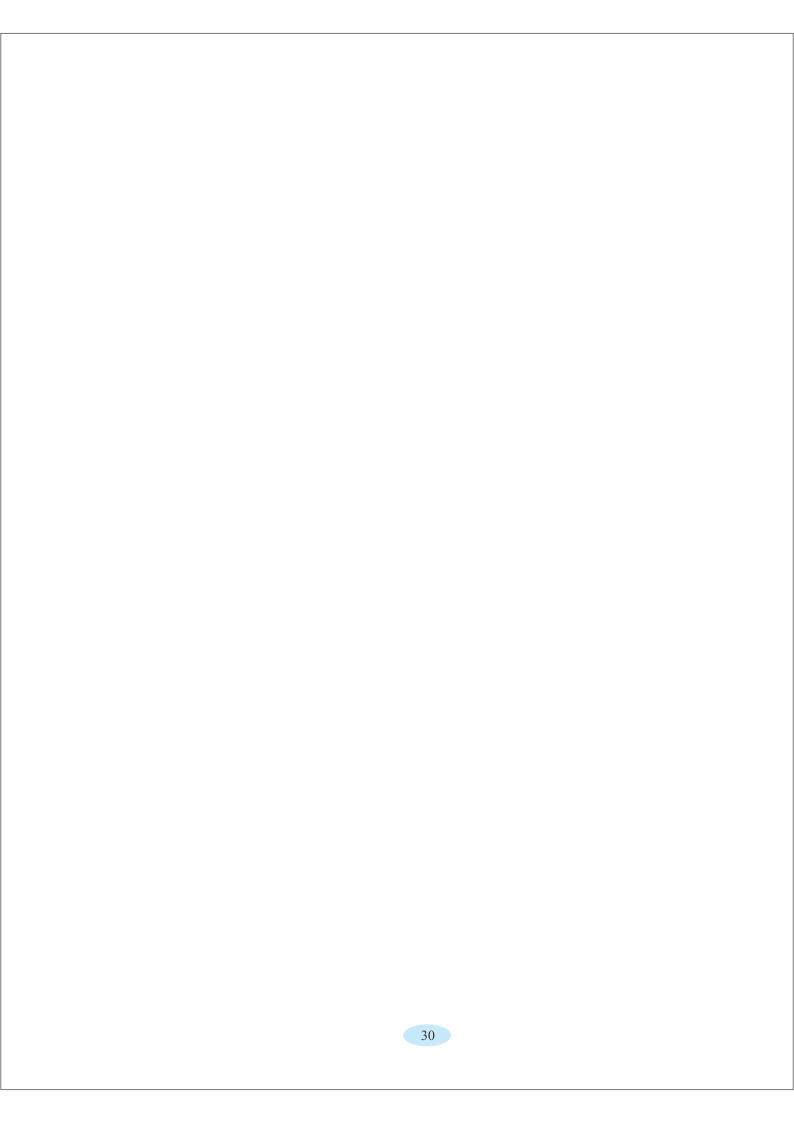
1

राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान

एमलोस / एमलोपेक्टीन मात्रा में परिवर्तन पाया गया था। आगे विश्लेषण प्रगति पर है।

प्रमुख उपलब्धिया

- चपाती तथा बिस्किट तथा ब्रैड के गुणवत्ता निर्माण के सुधार हेतु एडवांस्ड प्रजनन सामग्री का उत्पादन किया गया है।
- 2. भारतीय गेहूँ कृषिजोपजातियों में प्यूरोइंडोलाइन जीनों के एलेलिक परिवर्तन का अध्ययन किया गया है।


3. संरचना एवं संपत्तियों में परिवर्तन को स्टार्च कणिकाओं के ए, बी तथा सी प्रकार में अवलोकित किया गया है।

भावी परिप्रेक्ष्य

- उन्नत प्रसंस्करण गुणवत्ता के साथ प्रजनन सामग्री उत्पादित करना।
- 2. प्रमुख बीज अवयव जैसे कि स्टार्च, प्रोटीन तथा लिपिड़स प्रभावित प्रसंस्करण गुणवत्ता की संरचना तथा इंट्रेक्शन पैटर्न का अध्ययन करना।

पोस्ट हार्वेस्ट गुणवत्ता तथा पोषण के लिए फलों का सुधार

2.1 गुणवत्ता सुधार के लिए केले का जैनेटिक रूपातरण

प्रमुख अन्वेषक सिद्धार्थ तिवारी

परियोजना वैज्ञानिक आशुतोष पाण्डे

परियोजना अध्येता शिवानी नवनीत कौर

परियोजना सहायक विक्रान्त शर्मा प्रतीक कुमार

भूमिका

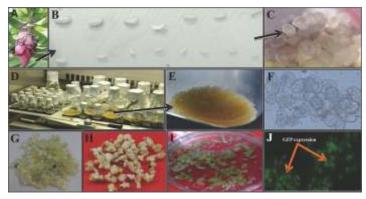
हमें इस परियोजना के लिए निधि प्राप्त हुई है। यह परियोजना बह्-संस्थानिक कोर परियोजना शीर्षक ''डेवलपमेंट एंड ट्रांसफर ऑफ टेक्नोलॉजी फ्रॉम क्वींसलैंड यूनिवर्सिटी ऑफ टेक्नोलॉजी (क्यू यूटी), ऑस्ट्रेलिया टू इंडिया फॉर बायोफोर्टिफिकेशन एंड डिजीज रेजिस्टेंस इन बनाना" का भाग है (जैव-प्रौद्योगिकी उद्योग अनुसंधान सहायक परिषद (बीआईआरएसी), जैव -प्रौद्योगिकी विभाग (डीबीटी), विज्ञान एवं प्रौद्योगिकी मंत्रालय, भारत सरकार द्वारा प्रायोजित परियोजना)। इस प्रस्ताव में प्रस्तावित किया गया है कि भारत की प्रयोगशालाओं द्वारा भारतीय केले की दो किरमों ग्रैंड नैन तथा रसथाली में विनिर्दिष्ट ट्रेटों के विकास, विधिमान्यता और ट्रांसफर के लिए क्यूयूटी के अनुभव और उपलब्धियों का उपयोग किया जाए। केले की चयनित किस्में प्रकृति में त्रिगृणित है, इसलिए बीजहीन व परागण में प्रकृति प्रतिरोध प्रदान करती है। ट्रांसजेनिक अप्रोच इस

फसल के जैव—किलेबंदी हेतु उच्च क्षमता रखता है और अपेक्षित विशेषता लाने के लिए जैविक रूप से सुरक्षित और उपयुक्त उपकरण बन सकता है। प्रथम स्टेज पर, क्यूयूटी भारतीय केले की किस्मों के जीनेटिक परिवर्तन हेतु Exp1, ubi, ACO तथा BT4 प्रोमोटरों के नियंत्रण के अधीन असुपिना केला द्वारा Phytoene synthase (Apsy2a) जीन युक्त अच्छे चार जीन कन्सट्रक्ट प्रदान कर चुका है। चयनित कृषिजोपजातियों के एम्ब्रोजेनिक सेल सस्पेंशन (इसीएस) कल्चर हेतु प्रोटोकोल्स का नाबी में सुधार किया गया। क्यूयूटी से प्राप्त जीन कन्सट्रक्ट के साथ इसीएस के जीनेटिक परिवर्तन द्वारा β कोरोटीन प्रचुर ट्रांसजेनिक केला के उत्पादन के लिए कार्य प्रारंभ किया है।

उद्देश्य

- प्रो विटामिन ए (पीवीए; β कैरोटीन) प्रचूर बायोफोर्टिफाइड तथा भारतीय केले की एग्रोनोमिकलि उन्नत ट्रांसजेनिक किस्मों जैसे ग्रैंड नैन तथा रसथाली का विकास करना।
- नाबी अनुसंघान क्षेत्र पर जर्मप्लाज्म एकत्रीकरण तथा पौधारोपण
- i) लगभग 30 स्थापित केला कृषिजोपजातियों की जड़ें (सकर) भारत के विभिन्न स्थानों से एकत्रित की गई हैं तथा जर्मप्लाज्म की स्थापना के लिए नाबी अनुसंधान क्षेत्र पर उगाए गए हैं (चित्र 1ए एवं बी)।
- ii) विभिन्न टिश्यू कल्चर द्वारा ग्रैंड नैन एवं रसथाली प्लांट्स जनरेट किए गए और नाबी अनुसंधान क्षेत्र पर उगाए गए (चित्र 1 सी)। यह ऐक्स प्लांट्स स्त्रोत के लिए आवश्यक हैं।

चित्र—1 : नाबी अनुसंधान स्थल पर स्थापित जर्मप्लाज्म तथा टिश्यू कल्वर उगाए गए पौधे। (ए) बनाना जर्मप्लाज्म, (बी) फलों के साथ केले के पौधे, (सी) टिश्यू कल्वर उगाए गए ग्रैंड नैन तथा रसथाली पौधे।


2. सौमेटिक एम्ब्रयोस का पुनः उत्पादन तथा जैनेटिक हस्तांतरण हेतु एम्ब्रयोजेनिक सैल सस्पेशन (इसीएस) कल्चर की स्थापना

- i) अर्थ— कठोर माध्यम पर एम्ब्रोजेनिक कैलस के एक्सप्लांट्स और शुरूआत की तैयारी के लिए एनआरसी बी त्रिची के दो कृषिजोपजाति (ग्रैंड नैन और रसथाली) के अपरिपक्व नर पुष्प कलियां एकत्रित की गई (चित्र 2 ए एवं बी) जो एक्स प्लांट्स के लिए उपयोग की गई।
- ii) तरल माध्यम से ईसीएस विकास एवं मल्टीप्लीकेशन के लिए एम्ब्रोजेनिक कैलस

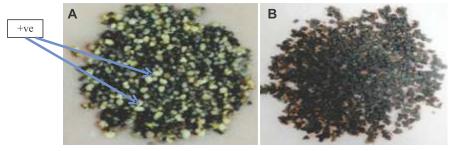
- एम्ब्रयोज जर्मिनेशन (चित्र 2 आई)।
- प) ट्रांसफोर्म ईसीएस में प्रदर्शित प्रत्याशित जीएफपी का ट्रांजिट अभिव्यक्ति (चित्र 2जे)।

3. क्यूयूटी से प्राप्त पीवीए जीन निर्माण (जीन कस्ट्रक्ट) के साथ ईसीएस का जीनेटिक हस्तांतरण

पृथक स्वतंत्र ट्रांसजेनिक लाइन्स के उत्पादन हेतु विभिन्न समसय अन्तरालों पर अनुष्ठित चार पीवीए जीन निर्माणों के साथ रसथाली एवं ग्रैंड नैन के ईसीएस का जीनेटिक हस्तांतरण। ट्रांसजेनिक

चित्र—2: सोमैटिक एम्ब्रयोस तथा जीनेटिक हस्तांतरण के जिमेंनशन के लिए एम्ब्रयोजेनिक सेल सस्पेंशन (ईसीएस) कल्चर विकास के स्तर। (ए) अपरिपक्व नर पुष्प कली (बी) प्रलोरल स्पेक्श से संलग्न रैंक 1 से 15 के अवयस्क नर पुष्प हैंउ एक्सप्लांट्स के रूप में उपयोग। (सी) एम्ब्रयोजेनिक कैलस इंडक्शन। (डी एवं ई) भोकर में ईसीएस कल्चरर्स। (जी एवं एच) पुनः उत्पादन माध्यम पर ईसीएस से ग्लोब्यूलर एम्ब्रयोस विकास। (आई) जिमेंनेशन माध्यम पर एम्ब्रयोस जिमेंनेटिड। (जे) जीएफपी के ट्रांजिट अभिव्यक्ति का माइक्रोस्कोपिक अवलोकन।

का उपयोग (चित्र 2 सी, डी, ई एवं एफ)
iii) पोषक माध्यम पर ईसीएस ड्राईव्ड ग्लोब्यूलर
एम्ब्रयोस विकास एवं पुनः उत्पादन (चित्र 2


जी एवं एच)

iv)

जर्मिनेशन माध्यम पर पुनः उत्पादित

एम्ब्रयोजेनिक सैल कानामाइसिन चयन (पुनः उत्पादन) माध्यम पर विद्यमान एवं स्वस्थ देखे गए हैं (चित्र 3ए)। गैर—हस्तांतरण सैल भुरे हो गए तथा चयन माध्यम पर विद्यमान नहीं है (चित्र 3बी)।

प्रमुख उपलब्धियाँ

चित्र—3: 3 माह के पश्चात कानामाइसिन चयन (पुनः उत्पादन) माध्यम पर एम्ब्रयोजेनिक सैल का विजुअल अवलोकन। (ए) भुरे रंग के गैर हस्तांतरणीय सैलों के साथ ट्रांसफोर्मड सफेद एवं स्वस्थ ग्लोब्यूलर एम्ब्रयोजेनिक सैल (एरो अंकित किया हुआ)। (बी) गैर हस्तांतरणीय (वीई कंट्रोल) एम्ब्रयोजेनिक सैल।

- ग्रैंड नैन तथा रसथाली के टिश्यू कल्चर रेज्ड पृथक पौधे ईसीएस विकास के लिए एक्सप्लांट के एकत्रीकरण हेतु नाबी के अनुसंधान क्षेत्र पर उत्पादित किए गए हैं।
- 2. ग्रैंड नैन तथा रसथाली कृषिजोपजातियों के ईसीएस कल्चर हेतु प्रोटोकोल के इष्टतमीकरण किया गया था।
- रसथाली तथा ग्रैंड नैन ईसीएस को जीनेटिक हस्तांतरण प्रयोगों के लिए प्रोत्साहित एवं गुणक किया गया है।
- 4. जीनेटिक हस्तांतरण प्रोटोकोल प्रत्याशी जीन के उपयोग द्वारा इष्टतमीकरण किया गया था। क्यूयूटी से प्राप्त जीन निर्माण (एक उत्पादन) के साथ ईसीएस का जीनेटिक हस्तांतरण β-केरोटीन भरपुर ट्रांसजेनिक केला के उत्पादन हेत प्रारंभ किया गया है।

भावी परिप्रेक्ष्य

- प्रो–विटामिन ए (β–कैरोटिन) भरपूर बायोफोर्टिफाइड भारतीय केला का विकास करना।
- 2. जैव—उपलब्धता अध्ययन, पोषणिक विश्लेषण तथा ट्रांसजेनिक्स का एग्रोनोमिकल फील्ड ट्रायल।

2.2 उष्ण कटिबंधीय फलों का गुणवत्ता विस्तार तथा फसलोत्तर स्थिरता

2.2.1 खोज का मेटाबॉलोमिक्स प्रयास तथा निषिद्ध के माध्यम से कृत्रिम फल पक्वन उत्पन्न करने के लिए बायोमार्करों का वैधीकरण तथा स्वीकार्य पक्वन उत्पन्न करना

प्रमुख अन्वेषक सुखविंदर पाल सिंह

परियोजना सहायक वीना बैंस

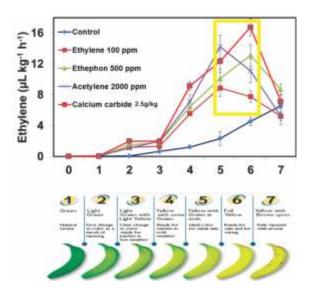
भूमिका

कृत्रिम फल पक्वन ताजा फल मंडी में गुणवत्ता विस्तार तथा रैगुलेटिंग डिमांड सप्लाई इक्वीलब्रियम पर गैस कि सिलेंडर अथवा कैटेलाइटिक जनरेटर दोनों से इथिलेन सोर्स के न्यून सकेन्द्रण से प्रभावन को रेगुलेटरी परिप्रेक्ष्य से एक अनुसंशित व्यवसाय एवं विश्व में स्वीकार किया जाता है। इथिफोन (2क्लारोथोलफोरफोनिक अम्ल) एक तरल रूप में इथिलेन रिलिजिंग, यौगिक है, जो फल पक्वन हेतू भी उपयोग किया जाता है, इथिफोन के हानिकारक अवशेषों को छोड़ता है तथा इसका निम्नीकरण उत्पाद, हाइड्रोक्शी इथाइलफोसफोनिक अम्ल (एचईपीए) है। यह यौगिक पोस्टहर्वेस्ट उपयोग हेत् पंजीकृत नहीं है, परन्तू इथफोन के साथ फल पक्वन इथफोन तथा एचईपीए के विश्लेषित निर्धारित अवशेषों द्वारा पहचाना जा सकता है। इथिलीन गैस एवं इथिफोन से अतिरिक्त में, भारत में नियोजित वाणिज्यिक पक्वन प्रक्रियाओं में पानी के घोल द्वारा कैल्शियम कार्बाइड पाऊडर से एसीटिलीन गैस लिब्रेटिड का भी उपयोग किया जाता है या वाय में आद्रता के साथ संपर्क द्वारा उपयोग किया जाता है। एक एक्शन एनालोग के रूप में. एसीटिलीन इंडयुसिस एथिलीन-जैसे कि रिस्पोंस।

कार्सिनोजेनिसिटी तथा कई अन्य स्वास्थ्य को खतरे कार्बाइड टोक्शिसिटी से होते हैं। कर्मचारियों तथा उपभोक्ताओं हेत् कैल्शियम कार्बाइड के उपयोग के साथ संबंधित स्वास्थ्य खतरों के देखते हुए, भारत में कृत्रिम फल पक्वन हेत् इसका उपयोग प्रतिबंधित किया गया है। फिर भी कैल्शियम कार्बाइड (एसीटिलीन गैस) या इथाइलीन गैस दोनों के साथ कृत्रिम फल पक्वन इसकी दिखावट एवं स्वाद गुणवत्ता में समान है तथा बिना अवशेष के पहचान पाना कठिन है। वर्तमान में कैल्शियम कार्बाइड के सथ पके हुए फलों को पहचानने के लिए कोई डाइग्नोस्टिक टेस्ट / प्रक्रिया उपलब्ध नहीं है। यह परियोजना कृत्रिम फल पक्वन प्राप्त करने जैसे कि कैल्शियम कार्बाइड तथा इथाइलेन से संबंधित बायोमार्कर का वैधीकरण तथा खोज से इंम्लोइंग मेटाबोलोमिक्स अप्रोच पर लक्षित है। यह परिकल्पित है कि डाइग्नोसिस के लिए कृत्रिम पक्वन (कैल्शियम कार्बाइड / एसीटिलीन बनाम इथाइलिन) से फल विषयों के मेटाबोलोम्स की तुलना के बायोमार्कर को समझना हैं।

उद्देश्य

1. कृत्रिम पक्वन प्राप्त करने से प्रत्युत्तर में केला



- एवं आम के फलों की गुणवत्ता पोसटहर्वेस्ट फिजियोलॉजी को समझना।
- अनुकरण पोस्टहर्वेस्ट स्थिति के अधीन कैल्शियम कार्बाइड उत्पन्न पक्वन एजेंट से डाइग्नोसिंग / प्रभेद फलों के विषय के सक्षम डायग्नोस्टिक बायोमार्करों की खोज एवं वैधीकरण करना।
- प्रैक्टिस में बायोमार्करों को अपनाने के लिए 3. गाइडलाइनों तथा डायग्नोस्टिक ल के विकास हेत् मेटाबोलोमिक्स इंफर्मेटिक्स का उपयोग।

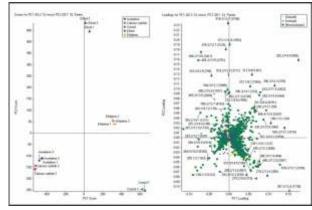
अनुसंधान प्रगति

बायोमार्कर की खोज हेतु मूलभूत आवश्यकता एक बडे विस्तार से ऑफसेट बायोलॉजिकली रूपान्तरण किया गया है। पक्वन उत्पन्न करने के विभिन्न प्रकारों को काम में लाने के द्वारा प्रयोगशाला में कृत्रिम प्रक्वन व्यवसाय के अनुकरण से प्रयोग किए गए थे। इथाइलिन के संकेन्द्रणों तथा इसके समान्तर (एसीटिलीन एवं प्रोपाइलेन), इथिफोन तथा कैल्शियम कार्बाइड को समकालिक फल पक्वन एवं प्राप्त अचर से आदेश में इष्टतमकारी किया गया था। केला एवं आम के फलों में समकालिक पक्वन इथाइलेन (100 पीपीएम), एसीटिलीन (2000 पीपीएम), प्रोपाइलेन (१००० पीपीएम), कैल्शियम कार्बाइड (२.५ जी / केजी फल तथा इथिफोन (५०० पीपीएम) के विभिन्न संकेन्द्रणों के साथ $21-22^{\circ}$ C. 90-95% आरएच पर प्राप्त किया गया था। इथाइलेन की बायोलॉजिकल गतिविधियों में भिन्नता तथा इसके उत्पन्न फल पक्वन प्रत्युत्तरों से अनुरूप पक्वन हेतु इसके वांछित संकेन्द्रणों से व्यक्त था। विभिन्न पक्वनों से केले के फल के फिजियोलॉजिकल प्रत्युत्तर एसीटिलोन तथा कैल्शियम कार्बाइड विस्तार इथाइलेन बायोसिंथेसिस प्रकट करता है तथा यह फल पक्वन के संकटकाल फेस के दौरान की झांकी है (चित्र 4)। नियंत्रण को छोडकर सभी उपचारों में समकालिक पक्वन पैटर्न फल पक्वन पैरामिटरों जैसे कि स्किन कलर, फर्मनेस, सोल्युबल सोलिड तथा एसिडिटी में भी अवलोकित किए गए थे। पक्वन स्टेज पर केला एवं आम के फलों के गूदा के नमूने आगामी विश्लेषण तक 80°C पर भंडारित किए गए थे।

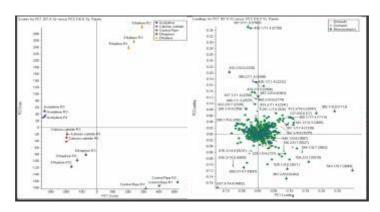
परियोजना की परिकल्पना के अनुसार, फल मेटाबोलोम में इथाइलेन एवं कैल्शियम कार्बाइड के

चित्र-4: विभिन्न पक्वन एजेंटों से युक्त कृत्रिम फल पक्वन से केले के फल के विषय की इथालेन बायोसिंथेसिस है।

साथ पके हुए फलों में अंतर हो सकता है, पोलेरिट तथा वोलेटिलिटी (वालेटाइल्स, सेमी-वोलेटाइल्स तथा नॉन वोलेटाइल्स) की विभिन्न डिग्री के साथ उच्च प्रचुरता से निम्न में पृथक मौजूद एक हजार लघू अणु समाविष्ट हैं। पहली जांच वोल्टाइल्स प्रोफाइल्स के लिए इथाइलेन तथा कैल्शियम कार्बाइड प्रभावित पक्वन से प्रतिबंधित केला एवं आम के फलों के नमुनों की जांच की गई है। फल के गूदे से वाष्पशीलों की हैं डस्पे स–सो लिड-फे स माइक्रो एक्ट्र क्शन (एचएसएसपीएमई) तकनीक के उपयोग हेत् निकाला गया है तथा एनालाइज्ड को क्रोमेटोग्राफ–मास स्पेक्ट्रोमीटर (जीसी-एमएस) के रूप में अप्रोचिज प्रदर्शित करता है कि इथाइलेन तथा कार्बाइड-प्रभावित फल पक्वन के मध्य वोल्टाइल्स डिफर्ड की तीव्रता है, परंतु मार्कर कम्पाउंड की उपस्थिति / अनुपस्थिति खोजी नहीं गई है। कार्बाइड-प्रभावित पक्वन के साथ संबंधित एक वोल्टाइल मार्कर की संभावना से पूर्णतः बाहर नहीं है क्योंकि यह प्रोटीन ट्रांसफर रिएक्शन स्पेक्ट्रोमेट्री (पीटीआर-एमएस) के रूप में जीसी-एमएस की अपेक्षा अधिक कृत्रिम तथा संवेदी एनालाइटिकल अन्य तकनीक है, जो बहुत निम्न स्तर पर वोल्टाइल ऑर्गेनिक कम्पाउंडस को खोजने में सक्षम है।


फल गुदा में नॉन-वोल्टाइल बायोमार्कर की उपस्थिति / अनुपस्थिति वोल्टाइल बायोमार्कर की तुलना में अधिक विश्वसनीय एवं साकार है। इसलिए

तरल-क्रोमैटोग्राफी-टाइम-ऑफ फ्लाहट स्पेट्रोमेट्री (एलसी–टीओएफ–एमएस) आधारित ग्लोबल अनटारगेटिड मेटाबोलोमिक्स अप्रोच बायोमार्कर खोजन के प्रथम कदम के रूप में अनुसरण की गई थी। नमूने तैयारी, यूपीएलसी तथा क्यूटीओएम एमस दशाएं क्षेत्र विस्तार के साथ मैटाबोलिटस की रेंज की बेहतर कवरेज हेत अवलोकित किया गया था। निकाले गए नमूनों को टीओएफ-एमएस तथा एमसएस / एमएस फ्रेगमेंटेश डाटा के एक स्वतन्त्र डाटा अर्जन विधि प्रचाल उत्पादन में परिचालि यूएचपीएलसी–क्यूटीओएम मास स्पेक्ट्रोमीटर में इंजेक्टेड किया गया था। मास स्पेक्ट्रल आऊटपुट विश्लेषण Analyst ™ तथा Peack View [™] सॉफ्टवेयर पैकेजों के उपयोग से आंतरिक मानक के विरूद्ध पीक एलाइनमेंट नोर्मालाइजेशन से युक्त था। केला तथा आम के प्रत्येक डाटा सेट के लिए लगभग 7000 तथा 5500 फीचर्स, क्रमशः 100–1000 एम / जैड की मास रेंज में खोजे गए थे। Marker View™ सॉफ्टवेयर पैकेज को क्लीनिकल केमिस्ट्री के सामान्य तौर पर अनुसरण में बायोमार्कर खोज के सिद्धान्तों पर आधारित विभिन्न परिप्रेक्ष्यों में प्रोसेस एवं विजुआलाइज डाटा से नियोजित किया गया है। कोन्फीडेंस (पी < 0.05, पी < 0.01 तथा पी < 0.001), मल्टीवैरायटी स्टेटिकल मॉडलिंग के विभिन्न स्तरों पर आधारित निम्नलिखित डाटा पूर्व-प्रसंस्करण तथा डाटा रिडक्शन निष्पादित किया गया था।


केले में प्रिंसिपल कम्पोनेंट एनालाइजिज (पीपीए) प्रदर्शित करता है कि पहले दो प्रिंसिपल कम्पोनेंट (पीसी'ज) को केला फल मेटाबोलोम की कुल किस्मों का 82.3% समझा जा सकता है। विभिन्न क्वाड्रन्ट्स में इथिलेन तथा कैल्शियम कार्बाइडके साथ पके हुए फलों के पृथक्करण स्कोर प्लांट में विजुआलाइज्ड किया गया है, जो सभी मेटाबोलोम पर आधारित फल पहचानने की संभावना को अंकित करता है (चित्र 5) कार्बाइड तथा एसीटिलीन— पके हुए फल के क्लोजर ग्रुपिंग आगे खोज स्टेज से सुदृढ़ परिणामित है।

आम में पीसीए प्रकट करता है कि आम के फल के मैटाबोलोम के कुल अन्तरों के 73.4% का प्रथम दो पीसी का सहयोग करता है। प्रदर्शित पृथक ग्रुपिंग के माध्यम से कैल्शियम कार्बाइड एवं एसीटिलीन के साथ पके हुए फल, परंतु यह इथिफोन के साथ पके हुए कार्बाइड ग्रूप से क्लस्टर क्लोज से भी अभिमुख है। (चित्र 6)। पीसीए से परवर्ती, भॉॉर्टलिस्टेड पोटेंशियल बायोमार्करव से आगे डाटा रिडक्शन स्ट्रेटेजी को अधिक युक्तियुक्त मानदंड जैसे कि उच्चतर संभावना, मेटाबोलिटिस इंटेसिटिज तथा लॉग-फॉल्ड चेंज के साथ अपनाया गया है। अनुमानित बायोमार्करों के सही मासिज पब्लिक डोमेन डाटाबेस जैसे कि इन कम्पाउंडस की अस्थाई पहचान से मेटालिन एवं मासबैंक के विरूद्ध व्याख्या करना था। Peak View में फार्मला फाइंडर एल्गोरिथम को मेटाबोलिट्स के व्युत्पन्न पोटेंशियल आंणविक फार्मूले से नियोजित किया गया है। इसके अतिरिक्त, इन मैटाबोलिटिस के एमएस / एमएस फ्रेंगमेंटेशन पैटर्नों को पब्लिक मेटाबोलोम डाटाबेसों के विरूद्ध व्याख्या की गई है, जिस-जिस समय

चित्र—5 : प्रिंसिपल कम्पोनेंट एनालाइसिज (पीसीए) स्कोर (बायें) तथा विभिन्न पक्वन उत्पन्न करने के साथ पके हुए फल के लोडिंग प्लांट्स (दायें) प्रकट हुए पृथक्करण।

चित्र—6 : प्रिंसिपल कम्पानेंट एनालाइसिज (पीसीए) स्कोर (बायें) तथा पृथक पक्वन उत्पन्न करने के साथ पके हुए फलों के लोडिंग प्लांट्स (दायें) प्रकट हुए पृथक्करण।

तालिका 1 : केला एवं आम के फलों में कैल्शियम कार्बाइड-प्रभावित पक्वन से लिंक्ड अनुमानित मेटाबोट्स की सूची।

m/z	MS/MS Fragmentation	<i>p</i> -value	Formula	Putative Identification (Metlin, Massbank)
		Ban	nana	
188.0702	118, 146, 143, 170	< 0.001	C9H21N3O	N-acetyl spermidine
191.0373	98, 110, 170, 201, 182	< 0.001	C6H6O5S	3- Sulfocatechol
205.0965	118, 146, 188, 170, 159	< 0.001	-	Unknown
259.1887	129, 111, 147	< 0.001	C14H28O2	Tetradecanedioic acid
277.2148	121, 93, 107, 179, 259	< 0.0001	C18H30O	Octadecadiynoic acid
280.2361	263, 245, 95, 149, 81, 109	< 0.0001	C18H30O	2,4,6-tri tertiary butyl phenol
287.2361	153, 161, 133	< 0.0001	C15H10O4	Chrysin
291.2299	93, 135, 121, 149, 119, 175	< 0.001	C16H34O4	1,2,3,4- Hexadecanetetrol
292.1744	113, 215, 95	< 0.0001	C13H22O6	Ethyl-4,4-diethoxy-2- (ethoxymethylene)-3-oxo butanoate
325.1622	127, 163, 145, 69	< 0.01	C17H24O6	Dibutyl-2,6-dimethyl-4-oxo-4-H-pyran-3,5-dicarboxylate
366.3724	203, 349, 331, 71	< 0.0001	C16H23N5O5	Isopentyl adenine-7-glucoside
555.2929	313, 155, 537, 393, 317, 401, 98	< 0.0001	-	Unknown
575.3840	455	< 0.0001	C15H22O4	12, 13-epoxytrichothec-9-ene-4,15-dic
663.4543	495, 551, 439, 607, 383, 327	< 0.0001	-	Unknown
955.556	657	< 0.0001	C64H100O4	Guanosine pentaphosphate adenosine
		Ma	ngo	
392.7713	613, 301, 144	< 0.0001	-	Unknown
405.2996	89,133,396,221, 115, 388	< 0.0001	C23H42O4	Oxalic acid allyl octadecyl ester
412.3084	133, 403, 177, 199, 221	< 0.0001	-	Unknown
434.3219	89, 425, 133, 177, 340, 155,	< 0.0001	-	Unknown
456.3356	133, 177, 448, 362, 207	< 0.0001	-	Unknown
514.3945	497, 133, 177, 215, 371, 453	< 0.0001	C32H48O4	Unknown
555.4084	184, 367	< 0.0001	C27H48O9	3-Beta-galactopyranosyloxy-2- hydroxypropyl-9,12-octadecadienoate
572.4354	133, 177, 229, 415, 555	< 0.0001	C35H54O5	Bis(2-(4-nonylphenoxy)ethyl carbonate
616.4613	89, 599, 133, 177, 229, 309, 557	< 0.0001	C37H58O6	17-Hydroxy-3,11,20-trioxopregn-4-en- 21-yl acetate .
762.5554	177, 133, 287, 353, 591	< 0.0001	_	Unknown

उपलब्ध हुआ। केला एवं आम के फल में कैल्शियम कार्बाइड पक्वन से लिंक्ड पोटेंशियल बायोमार्कर तालिका 1 में सूचीबद्ध किए गए हैं।

कैल्शियम कार्बाइड एवं इथाइलेन से संयोजन में इथिफोन केला एवं आम के फलों के पोस्टहर्वेस्ट पक्वन हेतू वृहत स्तर भी उपयोग किया जाता है। इथिफोन के निम्नीकरण पैटर्न के लिए अध्ययन हेत् प्रयोग किए गए थे तथा यह केला एवं आम के फल में मेटाबोलिज्म प्रोडक्ट हाइड्रोक्शी इथाइलफोस्फोनिक एसिड (एचईपीए) हैं। एलसी-एमएस / एमएस आधारित मैथ्ड को फल में इथिफोन एवं एचईपीए अवशेषों के निर्धारण हेत वैधीकरण एवं अवलोकित किया गया था। इथिफोन (500 पीपीएम) के साथ उपचारित आम एवं केला फल के पक्वन को को अनुमत करता है तथा पक्वन की विभिन्न स्टेजों पर सैम्पलिंग की गई। इथिफोन की सुनिश्चित परिमाणन तथा संबंधित एचईपीए की मात्रात्मक अध्ययन इसके निम्नीकरण पैटर्न तथा भारतीय खाद्य सुरक्षा एवं मानक प्राधिकरण द्वारा स्थापित अधिकतम अवशेष सीमाओं के साथ तूलना की गई है।

प्रमुख उपलब्धियाँ

- समकालिक कृत्रिम फल पक्वन को इथाइलेन के रूप में पक्वन प्राप्त करने के उपयोग हेतु प्राप्त किया गया था। इसके केला एवं आम के फलों में समरूप (एसीटिलीन एवं प्रोपाइलेन), इथिफोन एवं कैल्शियम कार्बाइड।
- 2. बायोमार्कर खोज अनुकरण एलसी— यूटीओएफ—एमएस अप्रोच आम की अपेक्षा केले मे अधिकतर विस्तार से प्राप्त किया गया है।
- 3. कुछ पोंटेशियल बायोमार्करों की अनुमानित पहचान सही मास, मोलिक्यूलर फार्मूले, एमएस / एमएस फ्रेगमेंटेशन पैटर्न पर आधारित मल्टीपल अप्रोचिज के उपयोग में निष्पादित किया गया है।
- 4. फल सर्फेंस पर इथिफोन एवं एचईपीए अवशेषों के अनुमानों हेतु एलसी— एमएस / एमएस आधारित विधि की जांच की गई है तथा फलों में अधिकतम अवशेष

सीमाओं के मॉनिटर हेतु मूल्यांकन किया गया है।

भावी परिप्रेक्ष्य

- 1. केला एवं आम के फलों में कार्बाइड— प्रभावित पक्वन से लिंक्ड बायोमार्करों का वैधीकरण विचारणीय मल्टीपल फैक्टरों में आयोजित किया जाएगा।
- फ्लेवर एवं पोषण के लिए जिम्मेदार मेटाबोलिट्स की व्यापक लक्षित प्रोफिलिंग को कृत्रिम फल पक्वन के सर्वेक्षण में आयोजित किया जाएगा।

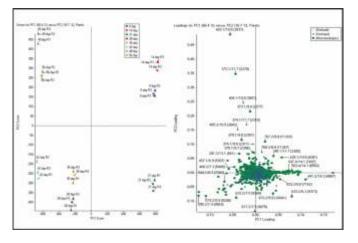
2.2.2 ताजा एवं प्रसंस्करण उद्योगों हेतु किन्नू मेंडेरिन की गुणवत्ता तथा पोस्टहार्वेस्ट स्थिरता

प्रमुख अन्वेषक सुखविन्दर पाल सिंह

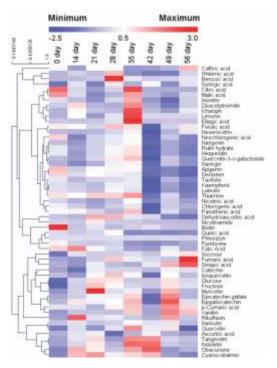
अनुसंधान अध्येता मनप्रीत कौर सैनी

भूमिका

'किन्नू' मेंडेरिन पंजाब राज्य की महत्वपूर्ण वाणिज्यिक फल की फसल है। 2011–12 में, इसका उत्पादन लगभग 43,000 हैक्टेयर क्षेत्र से लगभग 1. 0 मिलियन मीट्रिक टन से अधिक हुआ। ताजा एवं प्रसंस्करण उद्योगों हेत् फल की उपलब्धता विस्तार के लिए 5°C पर इष्टतम फल गुणवत्ता अनिवार्य पोस्टहर्वेस्ट कॉल्ड स्टोरेज हेतु नैरो हर्वेस्ट विंडो (मध्य-जनवरी से मध्य-फरवरी) में अनुशंसित किया जाता है। पोस्टहर्वेस्ट कोल्ड स्टोरेज के दौरान, निवास दरों पर निरन्नतरता के माध्यम से फल मेटाबोलिज्मए परन्तु इसके पोषाणिक, फ्लेवर एवं प्रसंस्करण गुणवत्ता का प्रभाव उनकी अवधि भंडार के दौरान महत्वपूर्ण मेटाबोलिक परिवर्तनों का अग्रणी है। कोल्ड स्टोरेज के अनुक्रम के दौरान मेटाबोलिक इवेंट्स का विश्लेषण स्वस्थ फल मेटाबोलोम के अपसरण का एक अनुमान प्रदान कर सकता है। पक्वन, सष्याव तथा पोस्टहार्वेस्ट कोल्ड स्ट्रेस के साथ संबंधित पृथक पथवे से संलग्न इन


गुणवत्ता ट्रेटो हेतु कुजी मेटाबोलिट्स जिम्मेवार होता है। बायोलॉजिकल सिस्टम में मेटाबोलिट्स की विविधता एवं प्रच्रता के साथ फल का मेटाबोलोमिक्स अप्रोच के माध्यम से ठीक प्रका से अध्ययन किया जा सकता है। मास-स्पेक्ट्रोमेटरी आधारित ग्लोबल गैर लक्षित मेटाबोलोमिक्स को बायोलॉजिकल सिस्टम में मेटाबोलिटस के हजारों की फेट में अन्तर्दृष्टि तथा बढ़े हुए व्यापक कवरेज से प्रदर्शित किए गए हैं। दूसरी ओर, लक्षित अप्रोच मेटाबोलिक शिफ्ट्स तथा इसके पर्सिवेबल जूस गुणवत्ता पैरामीटरों पर परिणामों के फ्लेवर, पोषण एवं प्रसंस्करण गुणवत्ता प्रदान करके गुणात्मक ओवरव्यू के लिए मेटाबोलिटिस प्राथमिक दायित्व के महत्वपूर्ण मात्रात्मकता से लक्षित अप्रोच है। चीनी, जैविक अम्ल तथा लिमोलोइडस 'किन्नू' मेंडेरिन के निर्धारित जूस गुणवत्ता में प्रमुख मेटाबोलिट्स है। कोल्ड स्टोरेज के दौरान इन मेटाबोलिट्स में मेटाबोलिक परिवर्तन फल की गुणवत्ता पर गंभीर प्रभाव डाल सकते हैं।

उद्देश्य


- लम्बी अवधि कोल्ड स्टीरेज तथा जूस गुणवत्ता के साथ इसके परस्पर सम्बन्ध से प्रत्युत्तर में 'किन्नू' फल मेटाबोलोम में एक्सप्लिकेटिंग मेटाबोलिक शिफ्ट्स करना।
- 'किन्नू' मेंडेरिन जूस के फ्लेवर, पोषण तथा प्रसंस्करण गुणवत्ता हेतु मेटाबोलिट्स दायित्व की लक्षित प्रोफाइलिंग।

अनुसंधान प्रगति

'किन्न्' मेंडेरिन की कोल्ड स्टोरेज के दौरान मेटाबोलिक शिफ्टस का अध्ययन, वाणिज्यिक तैयार फल 8 सप्ताहों के लिए कम तापमान (5°C) पर स्टोर किए गए तथा 2 सप्ताहों के अन्तराल पर सैम्पलिंग किया गया। निकाले गए जूस को टीओएफ-एमएस तथा एमएस/एमएस डाटा के स्वतन्त्र डाटा अर्जन विधि इनेबलिंग उत्पादन में युएचपीएलसी-क्यूटीओएफ मास स्पेक्ट्रोमीटर में से इंजेक्टेड किया गया था । Analyst™, Peak View™ तथा Marker View ™ सॉफ्टवेयर पैकेजों के उपयोग आंतरिक मानक तथा अनसूपरवाइज्ड तथा सुपरवाइज्ड मटल्टीवैरायटी विश्लेषण के विरूद्ध मास स्पेक्ट्रल आउटपुट पीक एलाइनमेंट, नोर्मलाइजेशन किया गया। प्रत्येक डाटा सेट के लिए लगभग 12.000 फीचर्स 100-1000 एम / जैड की मास रेंज में खोजे गए हैं। 8 सप्ताों के लिए कोल्ड स्टोरेज के दौरान विश्वास (पी < 0.05 पी < 0.01 तथा पी < 0.001) मल्टीवैरायटी सांख्यिकीय विश्लेषण रिफ्लेक्टेड सिग्निफिकेंट मेटाबोलिक शिफ्टस के विभिन्न स्तरों पर आधारित डाटा पूर्व-प्रसंस्करण तथा डाटा रिडक्शन किया गया है। पीसीए स्कोर प्लांट्स पर आधारित तीन प्रमुख समूहों में से फलों की क्लस्टरिंग प्राप्त की गई थी। कोल्ड स्टोरेज की स्टेजें प्रारंभिक (0-2 सप्ताह), मध्य (4-6 सप्ताह) तथा बाद में (7–8 सप्ताह) (चित्र 7)।

चित्र—7: 8 सप्ताह (56 दिनों) पर कोल्ड स्टोरेज के दौरान विभिन्न फसलों के दौरान 'किन्नू' मेंडेरिन फल के प्रिंसिपल कम्पोनेंट विश्लेषण (पीसीए) स्कोर (बायें) तथा लोडिंग्स प्लांट्स (दायें) डिपिक्टिंग ग्रुपिंग।

चित्र—8: 'किन्नू' मेंडेरिन में फ्लेवर, पोषण तथा प्रसंस्करण ट्रेटो के लिए विभिन्न मेटाबोलिट्स दायित्स के संकेद्रणों में हीट मैप मात्रात्मक परिवर्तन प्रदर्शित करता है। एचसीए पर आधारित मेटाबोलिट्स के क्लस्टरिंग पैटर्न भी प्रदर्शित करता है।

प्रिंसिपल कोर्डिनेट्स में विभिन्न नमूने प्रदर्शन कोल्ड स्टोरेज प्रोग्रेशन का वितरण स्टोरेज के दौरान सभी फल मेटाबोलोम में एक प्रभावशाली शिफ्ट के रूप में इंडिकेट हुआ है। सामान्य तौर पर जूस की गुणवत्ता कोल्ड स्टोरेज के दौरान जैविक अम्ल की हानि में बडे परिवर्तन से गुजरने में चीनी से अम्ल अनुपात की दशाओं में निर्धारित की गई है। तथापि, लघु मोलिक्युल्स उपस्थित विभिन्न केमिकल्स क्लासिज की गतिकी में मेटाबोलोमिक्स अप्रोच रेखांकन में आश्यर्चजनक परिवर्तन है। 'किन्नू' मेंडेरिन के कोल्ड स्टोरेज की विभिन्न स्टेजों से लिंक्ड डिस्क्रीमिनेंट के डाटाबेस जैसे कि मेटबिन तथा मास बैंक रिबिल्ड की अनुमानित पहचान के उपयोग से मेटाबोलाइ एनोटेशन के साथ मल्टी वैरायटी विश्लेषण युग्मित है। इसलिए एल-सी क्यूटीओएफ आधारित मेटाबोलोमिक्स फल गुणवत्ता से अग्रणी गैर उलघन मेकेनिज्म रेखांकन पोस्ट हार्वेस्ट कोल्ड स्टोरेज- प्रभावित मेटाबोलाइअ परिवर्तनों के भाक्तिशाली औजार बन सकता है।

संवेदनशीलता वृद्धि के साथ महत्वपूर्ण मेटाबोलिट्स का सम्पूण मात्रात्मक एवं यथार्थ मात्रात्मक सूचना प्रदान करता है तथा वांदित मात्रा ट्रेटों के साथ समन्व्यन स्थापन तथा फल मेटाबोलोम को बेहतर समझने के लिए पूरक गैर लक्षित विश्लेषण्ध भी करता है। 'किन्नू' मेडेरिन के फ्लेवर पोषण तथा प्रसंस्करण गुणवत्ता हेत् जिम्मेवार मेटाबोलोटिस का लक्षित विश्लेषण हाई-थ्रपुट एलसी-एमएस/ एमएस तकनीकों के उपयोग से किया गया था। पैटर्न मान्यता के लिए सांख्यिकीय टूल्स, जैसे कि श्रेणीबद्ध क्लस्टर विश्लेषण (एचसीए) तथा पीसीए की तलना हेत उपयोग किया गया था तथा क्लस्टर की परिभाषा द्वारा डाटा सेटों के साथ में समानताओं एवं भिन्नताओं का विजुआलाइजेशन किया गया है। इन मेटाबोलिट्स पर मात्रात्मक डाटा केन्द्रित है तथा एचसीए से पूर्व ऑटोस्केलिंग का विषय है। एचसीए को कोल्ड स्टोरेज अवधि पर आधारित मेटाबोलिटस के उत्पादित एक डेंडरोग्राम एक्स्पलेनिंन क्लस्टरिंग पैटर्न से मल्टीएक्सपेरिमेंट न्यवर (एमईवी) सॉफ्टवेयर के उपयोग से निष्पादित किया गया था। विभिन्न स्टोरेज इंट्रवल्स के दौरान मेटाबोलिटस के लेवलों में हीट मैप चित्रित परिवर्तन चित्र 8 में प्रदर्शित है। जैविक अम्बल (Citric acid. malic acid), limonoids (limonin, nomilin, de acetylom milin तथा ichangin) तथा फिनोलिक अम्ल (ellagic अम्ल) के संकेन्द्रणों में महत्वपूर्ण वृद्धि स्टोरेज के 35 दिनों के पश्चात अवलोकित किया गया था। एचसीए में क्लस्टरिंग के साथ में परिमाणित इन योगिकों के संकेन्द्रण में विद्ध महत्वपूर्ण है।

प्रमुख उपलब्धियाँ

- 'किन्नू' मेंडेरिन के कोल्ड स्टोरेज की प्रगित से संबंधित मेटाबोलिक गतिविधियां प्रारंभ की गई हैं तथा कोल्ड स्टोरेज की विभिन्न स्टेजों से संबंधित डिस्क्रिमिनेंट मेटाबोलिट्स अनुमानित पहचाने गए हैं।
- पले वर (चीनी, जै विक अम्ल तथा फ्लेवोनोइडस) पोषणिक (जल में घुलनशील विटामिन्स, बी—कॉम्प्लेक्श तथा सी) तथा प्रसंस्करण गुणवत्ता (limonoids) के लिए

'किन्नू' मेंडेरिन की लक्षित मेटाबोलाइट प्रोफाइल पहली बार के लिए किन्नू रस से प्राप्त किया तथा निकाला गया है।

भावी परिप्रेक्ष्य

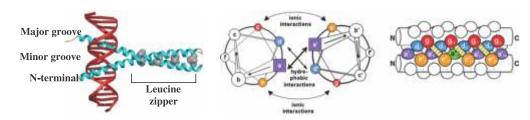
- जीसी—एमएस आधारित मेटाबोलोट्स अप्रोचकों एलसी—एमएस से कम्लीमेंट डाटा से अनुसरण किया जाएगा।
- 2. एलसी-एमएस तथा जीसी-एमएस उपयोग से गैर-लक्षित एवं लक्षित अप्रोचिज से विस्तृत डाटा को कोल्ड स्टोरेज द्वारा डिस्कवर मेजर मेटाबोलिक स्विचिज रेगुलेटिड से महत्वपूर्ण मेटाबोलिक पथवे के विरुद्ध व्याख्या एवं एकीकृत किया जाएगा। इन मेटाबोलिट्स के बारे में मूलभूत ज्ञान को जूस प्रसंस्करण उद्योग हेतु अनुशंसा/प्रक्रिया में अनुदित होगा।

फसल सुधार के लिए मूलभूत जैविकी

3.1 प्रमुख—नेगेटिव प्रोटीन का रूपांकन, ट्रांसक्रिप्शन घटकों के बीज—विनिर्दिष्ट बी—जिप की निषेध डीएनए बाइडिंग गतिविधियां

प्रमुख अनवेषक विकास ऋषि

अनुसंधान अध्येता प्रतीत जैन कौशिक शाह


भूमिका

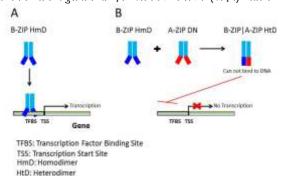
उच्चतर पौधे, बीज की रचन द्वारा विश्लेषित करते हैं कि मातृवंशी ड्राईव्ड बीज कोट द्वारा अंतर्विष्ट एक भ्रुण सुरक्षित है। प्रारंभिक सैल मंडलों तथा मोर्फोजेंसिस के पश्चात, भ्रूण प्रवेश परिपक्वता फेस, स्टोरेज उत्पादों के संचयन, भाष्क्रन सहनशीलता जल ह्वास तथा प्रसुप्ति के प्रवेश से युक्त होता है। बीज परिपक्वन एमएटी का यह फेस बहुत अच्छा है तथा बीज स्टोरेज प्रोटीन जीन (एसएसपी), एबीए3 एफयूएस3 तथा एलईसी1 में से प्रमुख जीनों की संख्या द्वारा विनियमित होता है। एमएटी जीन, प्रोमोटर विश्लेषण टीएफएस के बी-जिप फैमिली के साथ ट्रांस्क्रिप्शन फैक्टर्स (टीएफ) की बांइड संख्या से जाने जाते पृथक सीआईएस-रेगुलेटरी एलिमेंट्स से प्रदर्शित है। Arabidopsis तीन बी-जिप प्रोटीनों में, नामतः बी-जेड आईपीए, बी-जेड आईपी25 तथा बी-जैड आईपी53 को बीज विकास तथा परिपक्वन से महत्वपूर्ण भूमिका निभाते हैं। Arabiodpsis के उपयोग से विद्यार्थी एमएटी जीनों में मुख्य रेगूलेंट से बी-जैडआईपी 53 सुझाव देते हैं। बीज विकास के दौरान बी-जैडआईपी53 अभिव्यक्ति में वृद्धि हुई है तथा बी—जैडआईपी10 अथवा बी—जैडआईपी25 के साथ होमोडिमर अथवा हेटरोडिमर पार्टनरिंग के रूप में परिपक्वन फेस बी—जैडआईपी बाईंड्स से बी—बॉक्स (सीसीएसीजीटीजीसजी) के दौरान भ्रूण एवं भ्रूणपोष में स्थित होता है। विट्रो अध्ययन प्रदर्शित करता है कि होमोडिमर से तुलना, हेटरोडिमर्स जीन करता है पर निपुण एवं सहक्रियशील प्रभाव प्रदान करता है।

रूचिकर बी-जैडआईपी53 नॉकडाउन पौधे स्थिर सेट अंक्रणक्षम बीज जैविक प्रचुरता सूचित करता है। अनुपस्थित अथवा बी—जैडआईपी53 प्रोटीन, अन्य बी-जैडआईपी टीएफएस जैसे कि बी-जैडआईपी10. बी-जैडआईपी25 की सब-ऑप्टिकल अभिव्यक्ति अथवा कुछ अवतक अपरिचित प्रोटीनों में रेगूलेटर बीज-विनिर्दिष्ट जीन अभिव्यक्ति है। ओवरलेपिंग फक्शन जारी करने के आदेश में हमने प्रोटीन के डिजाइन को प्रस्तावित किया है, जो सभी तीन बीज विनिर्दिष्ट बी-जैडआईपी टीएफएस (बी-जैडआईपी53, बी-जैडआईपी10 तथा बी-जैडआईपी25) तथा उनके निषेध फंक्शनों के साथ हेटरोडिमेराइज होगा। ऐसे हेटरोडिमर्स को डीएनए से बाइंड नहीं किय जा सकत तथा जीन रेगुलेश अध्ययन हेतू उपयोग किया जा सकता है। पूर्व यह योजना पशु मॉडल प्रणाली में सफलतापूर्वक उपयोग की गई है।

उद्देश्य

 प्रमुख—नेगेटिव प्रोटीन का रूपांकन, बी—जैडआईपी53, बी—जैडआईपी10 तथा बी—जैडआईपी10 का निषेध डीएनए बाइंडिंग करना।

चित्र—1: ए) डीएनए से बी—जैडआईपी डिमर बाउंड का एक्स—रे स्ट्रक्चर। डीएनए लाल में है, अल्फा—हेलिक्स नीले में ह। डी अथवा ल्यूसिन पोजिशन एमिनों अम्ल ग्रे में प्रदर्शित है। बी) ल्यूसिन जिप्पर डिमर के अंत में प्रदर्शित एन टर्मिनस से दिखाई देता है। सर्कलों एवं स्क्वायरों के अन्दर लेटर्स हैपेटेड (ए, बी, सी, डी, ई, एफ, जी) में सात एमिनों अम्लों के लिए मानक नोमेनकन्वर है। पोजिशन ए तथा डी पर एमिनों अम्ल एक हाइड्रोफोबिक कोर बनाता है, जो कि पोजेशन ए एवं जी में एमिनो अम्ल आइओनिक इंट्रक्शंस से युक्त है। सी) ल्यूसिन जिप्पर कॉयल्ड—कॉयल साइड से देखा जा सकता है।

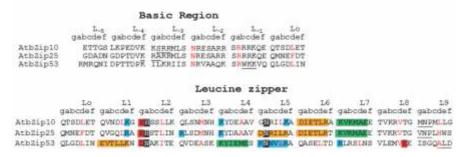

2. वन्य प्रकार के प्रोटीनों के साथ उनके अधिमान्य पारस्परिक क्रिया के लिए निर्दिष्ट प्रोटीन का प्रभावकारी अध्ययन करना।

अनुसंधान प्रगति

बी-जैडआईपी अथवा बेसिक-रेजिन ल्यूसिन जिप्पर प्रोटीन ट्रांसक्रिप्शन फैक्टर्स का एक परिवार है जो अनुक्रम निर्दिष्ट मैनर में डीएनए से बाइंड तथा कोयल्ड-कॉयल रूप से द्वितयीकरा है। चित्र 1 में प्रदर्शित अनुसार, यह एन-टर्मिनल डीएनए बाइंडिंग डोमेन है, जो डीएनए की अनुपस्थिति में अनस्ट्रक्टड है तथा एक सी-टर्मिनल डिमेराइजेशन डोमेन जिसे ल्यूसिन जिप्पर कहा जाता है। यह डिमेराइजेशन डोमेन में नाम अरोज है क्योंकि ल्यूरिस में पाया गया प्रत्येक सात एमिनो अम्ल है। यह ल्युसिंस बी-जैडआईपी प्रोटीनों की डीएनए बाइडिंग एवं डिमेराइजेशन हेत् आलोचानात्मक है। यहां पर Arabidopsis में अनुमानित 72 बी-जैडआईपी टीएफएस रिपोर्ट किए गए हैं। मानव एवं द्रोसोफिला उत्पत्ति के अन्य बी-जैडआईपी टीएफएस के साथ प्रयोगों से Arabidopsis में इन प्रोटीनों की डिमेराइजेशन संपत्ति की हम भविष्यवाणी करने में सक्षम होते हैं। होमोडिमराइज से कुछ अधिमानित तथा हेटरोडिमेराइज से अन्य अधिमानित हैं। पूर्व अध्ययन प्रदर्शित करता है कि ई एवं जी स्थितियों में कॉयल्ड-कोयल की स्थिरता से ए एव बी स्थिति योगदान में एमिनो अम्ल तथा डिमेराइजेशन स्पेसिफिसिटी हेतू आलोचनात्मक है। बी-जैडआईपी टीएफएस के जैविकी फंक्शन को सलझाना, यह निषेध डीएनए बाईंडिंग तथा व्यक्तिगत बी-जैडआईपी जीनों के फंक्शन में प्रोटीन उपयोग में लाभदायक है। इस प्रकार के प्रोटीनों को डोमिनेंट-नेगेटिव कहा जाता है। टर्म. 'डोमिनेंट' अपने जीनेटिक डोमिनेंस से संबंधित है। टर्म 'नगेटिव' सेल्यूलर प्रोटीनों के फंक्शन के अवरोधन का निर्माण करता है। इसके सामान्य रूप में, एक डोमिनेंट नेगेटिव टर्नकोटिड बी-जैडआईपी प्रोटीन हो सकता है, जो सजातीय वाइल्ड टाइप प्रोटीनों के साथ हेडरोडिमेराइज हो सकता है, जो निष्क्रिय हेटरोमिडमर उत्पादित करता है। तथापि डीएनए स्टेबिलाजिज की बाईंडिंग बी—जैडआईपी स्ट्रक्चर तथा यह जैविकी सक्रिय डोमिनेंट नेगेटिव प्रोटीन की जटिलता उत्पन्न करता है।

हम दो विभिन्न नीतियो पर आधारित रूपांकित क्रोमिनेंट -नेगेटिव्स द्वारा इस कठिनाई पर विजय प्राप्त करना है। यह द्वि मार्गी एक डोमिनेंट-नेगेटिव नामित कर सकता है। प्रथम नीति ट्वीक ल्युसिन जिप्पर मोटिफ से है। यह ई तथा जी पोजिशन में एमिनो अम्ल के परिवर्तन द्वारा पूर्ण किया जा सकता है। अन्य मार्ग इस धारणा पर आधारित है कि एक एमिनो अम्न अनुक्रम डीएनए की संपत्तियों से अनुकरणशील है। ज्ञात है कि बी-जैडआईपी आधारित क्षेत्र अल्फा हेलिक्श का एक रूप हो सकता है जब डीएनए से बाध्य हो, एक प्रोटीन अनुक्रम नामित था जैसे कि यह अनुकरणशील डीएनए हो सकता है। इनमें डोमिनें-नेगेटिव्स टर्म्ड ए-जैडआईपी नामित प्रोटीन अनुक्रम की डीएनए-बाईंडिंग क्षेत्र से बदलाव। यह अनुक्रम रूप डीएनए से बाईंड प्रभावकारी बी-जैडआईपी कम्प्लेक्श तथा वाईल्ड टाइप बी-जैडआईपी प्रोटीन के साथ एक बहुत स्थिर हेटरोडिमर है (चित्र 2)।

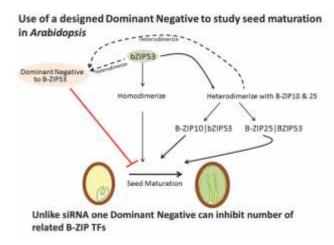
अध्ययन जीन रेगुलेशन से एक डोमिनेंट नेगेटिव (डीएन) अप्रोच


चित्र—2: एक बी—जैडआईपी ट्रांसक्रिप्शन फैक्टर के विरुद्ध एक नामित डोमिनेंट—नेगेटिव प्रोटीन के साथ एक्शन की एक स्कीमोटिक प्रदर्शन विधि। डोमिनेंट—नेगेटिव प्रोटीन ए—जैडआईपी के रूप में संदर्भित है। हेटरोमिडमेराइजिज वाइल्ड टाइप बी—जैडआईपी के साथ। कम्प्लेक्श डीएनए से बी—जैडआईपी बाउंड की अपेक्षा अधिक स्थिर है। एक बार फोर्मड, एक हीटरोडिमर बी—जैडआईपी तथा ए—जैडआईपी के बीच में डीएनए से बाइंड नहीं हो सकता, इसी प्रकार नॉकिंग आऊट अथवा ब्रिंगिंग डाऊनजीन अभिव्यक्ति है।

हम Arabidopsis सी—डीएनए के उपयोग से बी—जैडआईपी53, बी—जैडआईपी10 तथा

बी—जैडआईपी25 के ल्यूसिन जिप्पर क्षेत्र तथा क्लोंड डीएन बाईंडिंग डोमेन है। चित्र 3 इन तीन बी—जैडआईपी ट्रांसक्रिप्शन फैक्टर्स के एमिनो अम्ल में परिवर्तित एमिनो अम्लों द्वारा सम्पादित की जाएगी। यह प्रोटीन बी—जैडआईपी 53, 10 तथा 25 के साथ अधिमानतः हिटरोडिमेराइज होगी।

Arabidopsis thaliana seed-specific b-ZIP TFs



चित्र—3: Arabidopsis thaliana के सी—डीएनए से तीन बीज निर्दिष्ट बी—जैडआईपी ट्रांसक्रिप्शन फैक्टर्स का एमिनो अम्ल अनुक्रम। ल्यूसिन जिप्पर एमिनो अम्ल टिपिकली चार्जर्ड है। प्रत्येक हेप्टेड तथा व्यक्तिगत एमिनो अम्ल कलर कोडिड है। ऑरेंज एवं ग्रीन हेप्टेड्स का ई एवं जी पोजिशनों पर विपरित चार्जर्ड एमिनो अम्लों की उपस्थिति के कारण चित्रित प्रभावकारी इंट्रेक्शन्स। प्रतिक्षेपक इंट्रेक्शन्स नीले द्वारा चित्रित है। एमिनो अम्ल काा कोटेड है, यदि यह चार्जर्ड अथवा पोलर तथा हेप्टड में एक पोजिशन धारक है। पोजिशन ई अथवा जी में व्यक्तिगत आधारित एमिनो अम्ल लाल द्वारा चित्रित है, चूंकि यह एसिडिक एमिनो अम्ल के मामले में नीला है।

अनुक्रमों को प्रदर्शित करता है। यह प्रोकार्योटिक अभिव्यक्ति प्रणाली के क्लोंड हैं। क्लोंड जीन 95% + शुद्धता) से शुद्ध तथा बी एलश एलवाइएसई वैक्टेरियल स्ट्रेन में अभिव्यक्त है। यह प्रोटीन नम्ने

प्रमुख उपलब्धियाँ

1. बी—जैडआईपी 53, 10 तथा 25 की मिलीग्राम अभिव्यक्ति एवं सफल क्लोनिंग प्राप्त की गई है। ईएमएसए तथा सर्कुलर डाइक्रोज्म

चित्र—4: तीन बीज निर्दिष्ट बी—जैडआईपी की प्रभावित जीन अभिव्यक्ति में हमारी नामित डोमिनेंट—नेगटिव के एक्शन का एक स्कीमेटिक एक संभावित मैकेनिज्म का चित्रण।

स्ट्रक्चरल अध्ययन के लिए उपयोग किए जाएंगे। उक्त वर्णित अनुसार हम प्रोटीन को नामित किया है कि हम आशा करते हैं कि बी—जैडआईपी 53, 10 तथा 25 के साथ अधिमानतः प्रभावित होंगे। यह बी— जेडआईपी53 ल्यूसिन जिप्पर की ई एवं जी पोजिशन स्पेक्ट्रोस्कोपी के उपयोग से आगे अध्ययन किया जाएगा।

2. नापसन्द अन्य नॉक आऊट तकनीक जैसे कि एसआइआरएनए एक डोमिनेंट नेगेटिव को

ट्रांसक्रिप्शन फैक्टर्स के नंबर के फंक्शन का निषेध किया जा सकता है।

भावी परिप्रेक्ष्य

 जैव रसायन उपयोग, बायोफिजिकल तथा सैल भौतिकी का एक विस्तृत अध्ययन हेटरोडिमर्स की विशेषता तथा स्थिरता में व्यक्तिगत एमिनो अम्लो के अध्ययन योगदान से किया जाएगा।

3.2 कस्टर्ड सेब और लीची में बीज विकास की जैविकी

प्रमुख अन्वेषक सुधीर पी सिंह

सह–अन्वेषक श्रीकांत मंत्री

अनुसंधान अध्येता योगेश गुप्ता आशीष कुमार

भूमिका

उपजाऊ अण्डय के क्लस्टर से Annona squamosa फल विकास, इसलिए सम्पूर्ण फल संघटक पृथक लघुफल है। प्रत्येक अण्डय एक सिंगल एनाट्रोपोयस है, जो एक सिंगल बीज में विकास करता है। A. squamosa फल विकास के लिए अच्छा मॉडल है। A. squamosa में मॉलिक्यूलर मैकेनिज्म रेखांक फल सैट की जाचं करना, नेक्स्ट जनरेश सिक्वेसिंग को फल में बीजों की कांस्ट्रास्टिंग संख्या के साथ दो जीनोटाइप्स में प्रोफाइल अर्लिस्टेज फल विकास से नियोजित किया गया है।

लीची चाइनेंसिस एक अन्य फसल है, जहां बीजहीनता एक इच्छित विशेषता है। कुछ लीची किस्मों एक्सेशंस 'बीजरहित' या 'बेदाना' नाम से मशहूर, में बीज बहुत छोटे आधार के होते हैं और सामान्य लीची किस्मों की तुलना में गूदे से परिपूर्ण होता है। ओण्यूल निर्दिष्ट ट्रांसक्रिप्श का छोटे बीजों से संबंधित पहचाने गए जीनों से लीची की कान्स्ट्रांस्टिंग एक्सेशंस की जांच करना है।

उद्देश्य

- फल के बीज के कान्स्ट्रांस्टिंग संख्या के साथ
 A. squamosa जीनोटाइप्स के फल के विकास में ट्रांसक्रिप्टोम की जांच करना।
- फल में बीज के कान्स्ट्रांस्टिंग आकार के साथ
 L. chinesis जीनोटाइप्स के फल के विकास में ट्रांसक्रिप्टम की जांच करना।
- फल की फसलों में बीज रहित के साथ संबंधित प्रत्याशी पथवेज / जीनों / एसएनपी'ज की पहचान करना।

अनुसंधान प्रगति

- 1. चार आरएनए-seq libraries की ट्रांसक्रिप्टोम सिक्वेसिंग, A. squamosa सीताफल (फल में बीजों की अधिक संख्या) तथा एनएम के 1 (फलों में बीजों की कम संख्या) के दो कोन्स्ट्रास्टिंग जीनोटाइप्स में पोलिनेशन (डीएपी) के पश्चात 0, 4, 8 तथा 12 दिनों पर फल विकास से तैयार किया गया है। प्रत्येक लाइब्रेरी हेतु उत्पादित रीड्स की औसत संख्या 0.24 मिलियन थी। प्रत्येक लाइब्रेरी हेतु औसत रीड लम्बाई 650 बेस पेयर्स थी। 200 बीपी से समान अथवा उसकी अपेक्षा अधिक के साथ कंटीजस आगामी विश्लेषणों हेतु चयनित किए गए थे। कंटीज्स को गैर—अतिरिक्त डटाबेस से मैप्ड किया गया (तालिका 1)।
- 2. विभिन्न विकास की स्टेजों के कंटीज्स में सीताफल तथा एनएमकी, क्रमशः में सीएपी 3 परिमाणित 14921 तथा 14178 सुपर कंटीज्स उपयोग से सुपर—कंटीज्स एनआर डाटाबेस के विरूद्ध ब्लास्ट थे तथा यह किस्मों जैसे कि स्ट्राबेरी, अंगूर तथा आडू के साथ निकटता से संबंधित है (तालिका 2)। यह विश्लेषण सीताफल तथा एनएमकी जीनोटाइप्स क्रमश से निर्दिष्ट अनुसार 3851 तथा 2542 कंटीज्स के बारे में प्रकटित है।
- हार्मोन्स से संबंधित ट्रांसक्रिप्टस पुछताछ के रूप में Arabidopsis प्रोटीन सिक्वेंसिस के उपयोग से ब्लास्ट सर्च विश्लेषण द्वारा ट्रांसक्रिप्टोम डाटा में निर्धारित किया गया था।

दोनों जीनोटाइप्स में 240 हार्मोन्स जीन खोजे गए, इसमें से कुछ जीनोटाइप विनिर्दिष्ट है जिन्हें वैधीकरण करने की आवश्यकता है (तालिका 3)।

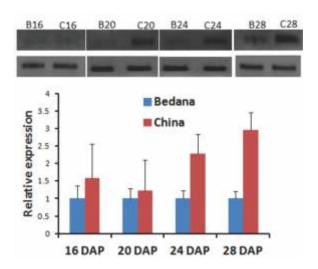
4. लीची में ओण्यूल निर्दिष्ट ट्रांसक्रिप्टोम डाटा का विश्लेषण प्रगति में है। बी3 डोमेन संलग्न जीन का अप—रेगुलेशन को स्मॉल सीडिड जीनोटाइप से तुलना में बोल्ड सीडेड जीनोटाइप के ओव्यूल्स विकास में नोटिस किया गया था (चित्र 5)। आगामी विश्लेषण प्रगति पर है।

प्रमुख उपलब्धियाँ

 ट्रांसक्रिप्टोम सिक्वेसिंग को L. chinensis के ओव्यूल्स विकास में तथा A. squamosa के फल विकास में पूर्ण किया गया है, जीनोटाइप्स

तालिका 1: चार विकास की स्टेजों पर दो कोंस्ट्रास्टिंग A. squamosa जीनोटाइप, सीताफल तथा एनएफके1 के फल विकास से एकत्रित आरएनए— Seq डाटा संक्षिप्त विवरण।

Genotype	Developmental stage (DAP=days after pollination)	Total Reads	Average Read length	Total contigs	Contigs (>200bp)	Annotated (>200bp)	Annona specific genes (>200bp)
	0 DAP	227,732	711	11872	10403	8176	2227
	4 DAP	198,269	637	2522	2074	1808	266
Sitaphal	8 DAP	219,057	695	7671	6850	6023	827
	12 DAP	292,212	650	8408	7394	6512	882
MK1	0 DAP	288,216	650	9985	8645	7401	1244
	4 DAP	287,824	650	12559	11004	9038	1966
	8 DAP	272,750	650	8008	7001	6003	998
	12 DAP	143,649	610	2500	2078	1886	192


तालिका 2 : स्टैटिक्स ऑफ एनएमकेवन एवं सीताफल युनिजीनस के सिक्वेंस मिलाए गए प्रोटीन डाटाबेस उपयोग करते हुए।

Database	Contigs (Sitaphal)	Contigs (NMK1)
NCBI nr	10169 (68.15%)	11469(80.89%)
Grape protein	9187 (61.57%)	11126 (78.47%)
Peach protin	9152 (61.33%)	11108 (78.34%)
Strawberry protein	9218 (61.77%)	11206 (79.03%)
Annona sp. specific	3851 (25.80%)	2542 (17.92 %)

तालिका 3 : पुछताछ के रूप में Arabidopsis प्रोटीन सिक्वांसिस के उपयोग से कोंट्रास्टिंग जीनोटाइप्स A. squamosa में खोजे गए कुल हार्मोनल जीन।

Hormone	Sitaphal specific gene	NMK 1 specific gene	Common gene	Total hormone related genes detected in A. squamosa	Total hormone related genes in Arabidopsis thaliana
Auxin	7	8	24	39	156
ABA	1	1	28	30	38
GB	3	2	17	22	33
Cytokinin	2	6	6	14	32
BR	8	4	35	47	74

चित्र—5: सेमी—क्वोटीटेटिव एवं रीयल—टाइम पीसीआर के उपयोग से स्मॉल सीडेड (बी. बदाना) बनाम बॉल्ड सीडेड (सी. चाइना) लीची जीनोटाइप्स के ओव्यूल्स विकास (पोलिनेशन (डीएपी) के पश्चात 16, 20, 24 तथा 28 दिन) में बी 3 डीमेन कंटेनिंग जीन के ट्रांसक्रिप्शन लेवल की क्वांटिफिकेशन।

में फल में बीजों के आकार तथा बीजों की संख्या क्रमशः में कॉन्ट्रास्ट है। आगामी विश्लेषण प्रगति में है।

2. स्मॉल बनाम बॉल्ड सीडेड लीची में बी 3 डोमेन कंटेनिंग जीन के अभिव्यक्ति पैटर्न में भिन्नता अधिसूचित की गई है। जीन को Arabidopsis Chaliana में बीज विकास के दौरान रेगुलेट बीज परिपक्वन पथवे से जाना जाता है। आगामी विश्लेषण प्रगति में है।

भावी परिप्रेक्ष्य

- A. Squamosa तथा L. Chinensis के कंट्रास्टिंग जीनोटाइप्स में फल एवं ओव्यूल विकास के दौरान aucin, cytokinin तथा Gibberellins एवं Crosstalks से संबंधित जीनों का ट्रांसक्रिप्शन विश्लेषण।
- 2. A. Squamosa तथा L. Chinensis के कंस्ट्रास्टिंग जीनोटाइप्स में एसएनपी डिटेक्शन तथा एसएसआर माइक्रोसैटेलाइट मार्कर्स की आइडेंटिफिकेशन।
- A. squamosa तथा L. Chinensis में सीडलेसनेस के साथ संबंधित कैंडिडेट पथवेज / जीनां का आईडेंटिफिकेशन।

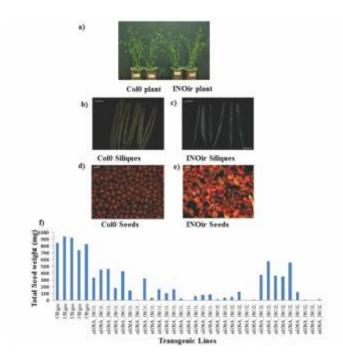
3.3 लम्बे अन्तराल सिगनलिंग के माध्यम से ट्रेट के मॉडयूलेशन हेतु पहुंचों का विकास।

प्रमुख अन्वेषक सुधीर पी. सिंह

अनुसंधान अध्येता अनीता कुमारी

भूमिका

पुष्पण टिसूज में प्राप्त जीन साइलेंसिंग से एसआईआरएनएस के रूप में मोबाइल सिग्नलों के लम्बे अन्तराल ट्रांसिमश की पूर्व अनुमान स्थापना हेतु अनुसंधान परियोजना। यह इकोनॉमिकल महत्वपूर्ण ट्रेट्स जैसे कि सीडलेसनेस के रूपांतरण हेतु नॉन ट्रांसजेनिक वंशजों में साइलेंसिंग सिग्नलों के वितरण हेतु विकसित ट्रांसजेनिक रूट स्टॉक से इच्छित है। विषाणु रोगवाहकों का बहुमत अग्रस्थ विभज्योतक पहुंच से असमर्थ है, जिसकी सीमाएं फल टिसूज में जीनों के फंक्शनल विश्लेषणों में इसक उपयोग है। यह परियोजना एक विषाणु रोगवाहक रूपांकन पर भी लक्षित है, जो जीन के साइलेसिंग को प्राप्त कर सकती है, जिसकी अभिव्यक्ति विशेषतः ओव्यूल में तथा इसी प्रकार बीज संबंधित ट्रेटस के नॉन ट्रांसजेनिक मोड में लिक्षत हो सकती है।


उद्देश्य

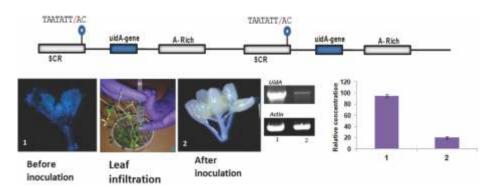
- वाइल्ड इंशज ग्राफ्टेड ऑनटू एक रूट—स्टॉक के ओव्यू में जीन साइलेसिंग की स्थापना करना, जा वंशज में साइलेसिंग सिग्नल ट्रांसमिट कर सकता है।
- 2. लीफ इनफिल्ट्रेशन के माध्यम से ओव्यूल में जीन साइलेसिंग हेतु विषाणु रोगवाहक का विकास करना।

अनुसंधान प्रगति

 रिपोर्टर जीन (uida) की साइलेसिंग को रूट-स्टॉक के माध्यम से एसआईआरएनएस डिलीवर्ड द्वारा वंशज के पुष्पण कलियों में अवलोकित किया गया था।

- तथा उगाए गए हैं, जो वाइल्ड प्लांट (सीओ10) के साथ तुलना द्वारा अवलोकित किय गया था। पृथक ट्रांसजेनकि लाइन्स, आईएनओ जीन की डीएसआरएनए अभिव्यक्ति को उत्पादित सीडलेस सिलिक्स ने अवलोकित किया गया है (चित्र 6)।
- 3. वाइल्ड एवं ट्रांसजेनिक (यूआईडीए) वंशज को एसआइआरएनए वितरण योग्य रूट—स्टॉक पर ग्राफ्टेड किए गए हैं। स्मॉल आरएएनए'ज को वाइल्ड एवं ट्रांसजेनिक (यूआईडीए) वंशज के ओव्यू से रूट—स्टॉक से परीक्षा ट्रांसिमश से वंशज के कली विकास से निकाले गए हैं। स्मॉल आरएनए'ज की सिक्वेसिंग नियोजित की गई है।

चित्र—6: आईएनओ जीन फ्रेगमेट (आईएनओआईआर) के ट्रांसजेनिक लाइन्स अभिव्यक्ति दोहराई (ए) वाइल्ड सीओ10 प्लांट (बायाँ) आईएनओआईआर अभिव्यक्ति ट्रांसजेनिक लाइन्स (दायाँ) (बी) वाइल्ड प्लांट का सिलिक्स (सी) फ्लोम में ट्रांसजेनिक प्लांट अभिव्यक्ति आईएनओआईआर की सिलिक्स (डी) वाइल्ड प्लांट में बीज (ई) फ्लोम में ट्रांसजेनिक प्लांट अभिव्यक्ति आईएनओआईआर के बीज (एफ) ट्रांसजेनिक लाइन्स अभिव्यक्ति आईएनओआईआर के साथ तुलना।


- ट्रांसजेनिक लाइन्स अभिव्यक्ति एसआई— आरएनएएस संघटक तथा फलोम—निर्दिष्ट विलोम एक आवरण निर्दिष्ट जीन, आईएनओ ट्रांसजेनिक प्लांट्स एवं पौधों के फिनोटाइप
- 4. विषाणु रोगवाहक की पुष्पण टिसूज में उत्पन्न जीन साइलेसिंग के लिए विकसित किए गए हैं। विषाणु रोगवाहक के लीफ इनफिल्ट्रेशन के पश्चात पुष्पण कलियों में साइलेसिंग को

अवलोकित किया गया था (चित्र 7)।

प्रमुख उपलब्धियाँ

को लक्षित जीनोम परिवर्तनों हेतु परिनियोजित किया गया है, परंतु यह प्रत्येक लक्षित अनुक्रम में जटिल है।

चित्र—7: पुष्पण टिसूज में यूआईडीए जीन के विषाणु रोगवाहक परिमाणित ट्रांसक्रिप्शनल साइलेसिंग का लीफ इनफिल्ट्रेशन।

- रिपोर्टर जीन की साइलेसिंग को रूट—स्टॉक से एसआईआरएनएएस डिलीवर्ड द्वारा पुष्पण टिसूज से प्राप्त किया गया है।
- रिपोर्टर जीन की साइलेसिंग को विषाणु रोगवाहक के लीफ इनिफल्ट्रेशन द्वारा पुष्पण टिसूज में स्थापित किया गया है।

भावी परिप्रेक्ष्य

- परिवर्तित रूट-स्टॉक से साइलेसिंग सिग्नल्स ट्रांसमिटिड द्वारा ओव्यूल निर्दिष्ट जीन की साइलेसिंग करना।
- परिवर्तित विषाणु रोगवाहक के लीफ इंफिल्ट्रेशन द्वारा ओव्यूल निर्दिष्ट जीन की साइलेसिंग।

3.4 पौधों में आरएनए गाइडेड जीनोम एडिटिंगप्रमुख अन्वेषक

सतोष के उपाध्याय

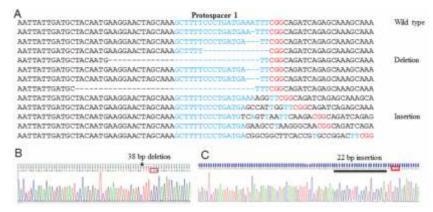
भूमिका

नॉन ट्रांसजेनिक पहुंच के माध्यम से निर्दिष्ट एवं प्रभावकारी जीनोम एडिटिंग खाद्य फसलों के सुधार हेतु उच्च प्राथमिकता अनुसंधान का एक क्षेत्र है। पृथक जीनोम—एडिटिंग तकनीकें जैसे जिंक फिंगर न्यूक्लिसिज (जैडएफएन) तथा ट्रांसक्रिप्शन एक्टीवेटर—जैसे इंफेक्टर न्यूक्लिसिज (टीएएलईएन)

हाल में, टाइप- 📗 प्रोकार्योटिक क्लस्टर्ड रेगुलर्ली इंटरस्पेरड भाॉर्ट पालिड्रोमिक रिपीट्स (सी आरआई एसपी आर) तथा सीआआईएसपीआर-एसोसिएटेड प्रोटीन (सीएएस) सिस्टम पर आधारित एक नई तकनीक जीनोम अभियात्रिकी हेतु एक प्रभावकारी टूल के रूप में विकसित की गई है। यह हाइल निर्दिष्ट है, अभियंता से सस्ती एवं सरल है। 'स्पेरर' अनुक्रमों द्वारा पृथक रिपिट अनुक्रमों के व्यवस्थित के सीआरआईएसपीआर युक्त है, जो लक्षित जीन/जीनोम से संबंधित है। सीआरआरईएसपीआर व्यवस्थित करने से एक लम्बे प्राइमरी ट्रांसक्रिप्ट ट्रांसक्राइब्स तथा भाॉर्ट सीआरआई एसपीआर आरएनएएस (सीआरआरएनएएस) में से प्रोसेस्ड किया गया है। लक्षित जीन अनुक्रम से एक वेरिएबल स्पेसर अनुक्रम (गाईड) पूरक तथा एक कन्जर्व्ड रिपोर्ट अनुक्रम के सीआरआरएनए से युक्त है। बेस पेयरिंग एवं कोज अनुक्रम-निर्दिष्ट डीएसडीएनए विदलन द्वारा लक्षित अनुक्रम से भॉार्ट सीआरआरएनए तथा सीएएस9 प्रोटीन बाइंड्स द्वारा रिबोन्युक्लो प्रोटीन कम्प्लेक्श फोमर्ड है। एक कन्जर्व्ड अनुक्रम मोटिफ (एनजीजी) की उपस्थिति को लक्षित स्पेसर अनुक्रम के 3' डाउनस्ट्रीम पर प्रोटो-स्पेसर एडजासेंट मोटिफ (पीएएम) के रूप में जानी जाती है जो विदलन हेत् अनिवार्य रूप से भी रिपोर्ट किया गया है। सीआरआईएसपीआर सीएस सिस्टम बेक्टीरिया, यीस्ट एवं एनिमल सिस्टम से जीनोम एडीटिंग हेत्

कार्य कुशलता से प्रमाणन किया गया है तथा मौजूदा पौधों से प्रायोगिक है। यद्यपि कुछ नॉन स्पेसिफिक एडीटिंग रिपोर्ट की गई है, सीआरआई— एसपीआर—सीएएस सिस्टम को डिजाइन करना बहुत सरल है, उच्चमत प्रभावकारी तथा स्पेसिपिफसिटी के लिए सुधारा जा सकता है।

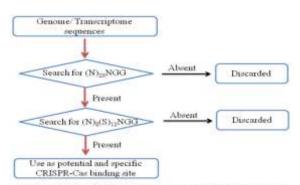
उद्देश्य


- मॉडल एवं क्रॉप प्लांट्स में इस सिस्टम की स्थापना करना।
- 2. क्रॉप प्लांट्स में फंक्शनल जीनोमिक्स के लिए इस सिस्टम का उपयोग करना।
- जीनोम एडीटिंग की नॉन—ट्रांसजेनकि मोड हेतु सिस्टम की वैधीकरण करना।

अनुसंधान प्रगति

- 1. हमने गेहूं (Triticum aestivum) तथा Nicotiana benthamiana में सीआरआई— एसपीआर—सीएएस मेडिएटेड जीनोम एडीटिंग मे एप्लीकेशन स्थापित किए हैं। गेहूं के सैल सस्पेंशन कल्चर में Inositol oxygenase (inox) तथा phytoene desaturase (pds) जीनों में परविर्तन तथा N. benthamiana के लिब्स में पीडीएस जीन प्राप्त किए हैं (चित्र 8)।
- हमने बड़े जीनोम जैसे गेहूं में सीआरआई— एसपीआर—सीएएस बाईडिंग साइट की भविष्यवाणी के लिए एक टूल विकसित किया है। सीआरआई— एसपीआर—सीएएस बाईडिंग

साइट्स की पहचान सरल है। 3' एंड पर एनजीजी पीएएस के साथ एक निर्दिष्ट 23 न्युक्लोटाइड अनुक्रम की उपस्थिति के लिए अनुक्रमों के सीधे विश्लेषण की आवश्यकता है। एक ऑनलाइन टूल सीआरआईएसपीआर— सीएएस बाईंडिंग टूल सीआरआईएसपीआर— सीएएस बाईंडिंग साइट्स के निर्धारण हेतू उपलब्ध है, परंतु यह अनुक्रमों के बहुत छोटे नम्बरों के विश्लेषण हेत् सीमित है तथा यह उपयोगकर्ता की आवश्यकता के अनुसार परिवर्तित नहीं हो सकता है। आगे, यह वेब आधारित टूल है, जो इंटरनेट कनेक्शन एवं स्पीड पर आश्रित है। इसलिए लोकल मशीन पर लार्ज डाटा सेटों के विश्लेषणों हे सिम्पल, इजी से एडिट व हाई थ्रुपुट कम्यूटेशनल टूल / स्क्रिप्ट आवश्यक है। (चित्र 9) हमने ह्यूज न्युक्लोटाइड डाटा सेटों में निर्दिष्ट सीआरआईएसपीआर-सीएएस बाईंडिंग साइट के हार्ट थ्रुपुट डिटेक्शन के लिए python आधारित टूल विकसित किए हैं। यह टूल कई प्रकार की विंडो, एमएसी ओएएस तथा लिनस / यनिक्स आधारित ऑप्रेटिंग सिस्टमों के साथ हैं तथा नॉन-बायोइफोर्मेटिक्स बैंकराउंड से व्यक्तियों से भी यजूर फ्रेंडली है।


3. हमने उपलब्ध गेहूं के एसटी'ज में सीआरआईएसपीआर—सीएएस टारगेट साइट की फ्रिक्वेंसी का विश्लेषण किया है। एक अथवा

चित्र—8: सीआरआईएसपीआर—सीएएस सिस्टम द्वारा N. benthamiana के फाइटोन डीसेच्युरेज़ (पीडीएस) जीन के प्रोटोस्पेसर 1 पर एडीटिंग। (ए) पीडीएस जोन के प्रोटोस्पेसर पर इंडेल के साथ अनुक्रम एवं वाइन्ड टाइप का एलाइनमेंट। (बी) एवं (सी) चयनित विलोजन एवं निवेश, उत्परिवर्ती, क्रमशः के संजर अनुक्रम को प्रदर्शित करता है।

N. Any nucleotides, S. Seed sequences without duplication in complete genome.

चित्र-9: सीआरआईएसपीआर-सीएएस बाईंडिंग साइट भविष्यवाणी हेत् स्ट्रेटेजी की एक आउटलाइन।

अधिक प्रोबेबल टारगेट साइट की 90 प्रतिशत एसटी'ज की अपेक्षा अधिक उपस्थिति देखी गई है, जो क्रॉप सुधार प्रोग्रामों में जीनोम अभियांत्रिकी के ब्राइट स्कोप को अंकित करता है।

प्रमुख उपलब्धियां

- सीआरआईएसपीआर—सीएएस सिस्टम को गेहूं में जीनोम एडीटिंग के लिए स्थापित किय गया है, जो फंक्शनल जीनोमिक्स एवं क्रॉप सुधार कार्यक्रमों में उपयोग किया जा सकता है।
- एक हाई-श्रुपुट सीआरआईएसपीआर-सीएएस बाईंडिंग साइट भविष्यवाणी टूल को प्रोबेबल टारगेट साइट विश्लेषण से भी विकसित किया गया है।

भावी परिप्रेक्ष्य

- 1. लार्ज स्केल फंक्शनल जीनोमिक्स अध्ययन के लिए सीआरआईएसपीआर—सीएएस सिस्टम हेतु यूनिवर्सल वेक्टर का विकास करना।
- 2. मेंडेलिन सीग्रेगेश के साथ सीएआरआई— एसपीआर—सीएएस जीनोम एडीटिंग कम्मलीमेंटिंग द्वारा क्रॉप सुधार हेतु नॉन— ट्रांसजेनिक मेथ्ड का विकास करना।
- 3. नॉन—ट्रांसजेनिक मोड में क्रॉप सुधारों के लिए नेगेटिव रेगुलेटर्स के उन्मूलन तथा बायोसिंथेटिक पथवे अभियांत्रिकी।
- 3.5 लोअर प्लांट भिन्नता से व्हाइटफ्लाईस से

नए कीटनाशी प्रोटीन टोक्सिक का वियोजन एवं विशेषता

प्रमुख अन्वेषक

संतोष के उपाध्याय

भूमिका

फसलों के पौधों पर रहने वाले कीट कई प्रकार के पैदा होने वाले व उत्पादकता की हानि के कारण होते हैं। उसके द्वारा देश की कृषि अर्थव्यवस्था प्रभावित होती है। फसल हानि एवं कीटनाशों के रूप में कीट पेस्ट लागत बिलियन डोलर है तथा किसान वैकल्पित पेस्ट कंटोल स्टेटेजिस के लिए कीटनाशक प्रतिरोध. पयुलिंग एक लगातार खोज करके हमेशा उपचार करने का प्रयास करते रहते हैं। बायोटिक वृद्धि अथवा अबायोटिक स्ट्रेस के टोलरेस के साथ ट्रांसजेनिक फसलें ग्रेटर क्रॉप उत्पादकता प्राप्ति में आशाजनक योगदान प्रदर्शित करता है। Bacillus thuringiensis के ट्रांसजेनिक कॉटन अभिव्यक्ति क्राई टोक्शिन की विशाल वृद्धि उत्पादन जैसे कि हमारे देश में किसानों का सोसिटल स्टेट्स है। तथापि, माइनर पेस्ट्स जैसे अफिड्स, व्हाईटफ्लाइस तथा अन्रु की पोपुलेशन में सहगामी वृद्धि की डिमांड कुछ नई पहुंच है। उन्होंने विषाणुओं के ट्रांसिमशन द्वारा फ्लोम सेप जैसे कि अप्रत्यक्ष क्षति पर फीडिंग द्वारा पौधे से सीधे क्षति नाता है। आगे, वह पौधे के भागों पर चीनी की बहुत उच्च मात्रा को उत्सर्जित करते हैं, जो बेक्टेरियल एवं फंगल कोलोनाइजेशन को प्रोत्साहित करता है। इस चूसक जीव से बीटी-क्राई प्रोटीन्स कोज टोक्सिटी नहीं है। तथापि, अन्य प्रोटीन जैसे एन्जाइम इंडिबिंटर्ज, चिटिनाइसेस तथा लेक्टिन इस चूसक पेस्टस से अवरोध की कुछ डिग्री प्रदान कर सकते हैं। लोअर प्लांट डिवरसिटी से पहचाने गए नोवल जीनों से आइडिया इस चूसन पेस्ट्स के नियंत्रण औजार से भाक्तिशाली टूल बन सकते हैं।

उद्देश्य

- 1. लोअर प्लांट्स से नए कीटनाशक प्रोटीन इनकोडिंग जीनों के आइसोलेशन तथा व्हाइटफ्लाईस का जेनेटिक विकास करना।
- 2. इंसेक्टिसाइडल प्रोटीनों की रिकम्बीनेंट

अभिव्यक्ति प्यूरिफिकेशन एवं लक्षण वर्णन।

अनुसंधान प्रगति

1. ट्रांसिक प्टोम अनुक्रम तथा व्हाइट पलाइट का लक्षण वर्णन : फिजियोलॉजी एवं कीट पेस्ट कंट्रोल कार्यक्रमों के सम्बन्ध में व्हाईट पलाई (B. tabac) अवरोधों के जेनेटिक सूचना की अनुपस्थिति के पृथक अध्ययन किए गए हैं। इसलिए, हमने उत्पादित व्यापक जीनोमिक रिसोर्स से ट्रांसिक प्टोम अनुक्रम को अनुष्ठित किया है तथा जो लक्षण वर्णन हेतु उपयोग किया है। औसत लम्बाई के 592 बीपी के साथ 72716 यूनिग्सि में से एकत्रित तथा इल्यूमिना अनुक्रम के उपयोग से ~ 8 जीबी ट्रांसिक प्टोम डाटा से युक्त लगभग 83 मिलियन रीड स किया गया था। कुल 21129 यूनिटिग्स को ट्रिबोलियम कास्टानेयम (मॉडल इंसेक्ट के रूप में विचारणीय) तथा एसिथोंसिकोन पिसम

मिश्रणों में जीनोमस (केइजीजी) पथवेज तथा जीनो के 131 क्योटो एनसाइक्लोपिडिया से मापा गया था। अभिव्यक्ति प्रोफाइलिंग विटेंलोजेनिन, रिबोसोमल प्रोटीन व एनएडीएच डीहाईड्रोजेनेस उच्च अभिव्यक्ति जीन प्रदर्शित करती है तथा यह आरएनएआई द्वारा व्हाइटफ्लाईस के नियंत्रण हेतु पोंटिंशयल लक्षित भी हो सकता है।

(तालिका 5) हमने अवलोकित किया है कि एमईएएम 1, एमईडी तथा एसिया II 3 के साथ एच बायोटाइप की औसत डिवर्जेस 2, 1.95 तथा 0.92% थी। विश्लेषण की परिशुद्धता का प्रमाणन हेतु, हमने MEAM1, MED तथा Asia II 3 के मध्य विभिन्नताओं का भी विश्लेषण किया है। MED/MEAM1 (0.67%), MED/Asia II3 (1.75%) के मध्य समान भिन्नताएं पूर्व

तालिका 4 : व्हाईटफ्लाईस ट्रांसक्रिप्टोम डाटा की समरी

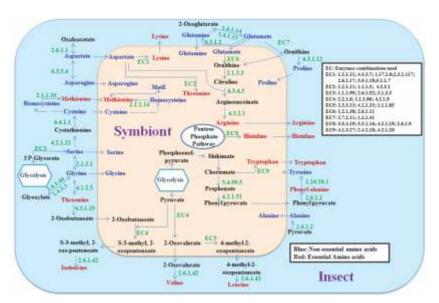
Total number of reads	83,828,866
Total number of clean reads after removing adapter sequence and poly A, T and N sequences	82,818,787
Average read length	101 bp
Total number of scaffolds after Abyss pair wise assembly	1,324,517
Total number of distinct sequences (unitigs) obtained after CAP3 assembly	72,716
Longest unitig	12135 bp
Smallest unitig	150 bp
Mean length of unitigs	591.9
Number of annotated unitigs	21129
Total GO terms obtained	52847
Total KEGG pathway mapped	131
Total Enzymes code mapped to KEGG pathway	545
Number of unitigs showed Blast hit to symbionts genome	313

(B. tabali) से क्लोसेटस इंसेक्ट के एनसीबीआई नॉन—रेडंट प्रोटीन डाटाबेस एवं प्रोटीन अनुक्रमों के विरूद्ध ब्लास्टक्श सर्च द्वारा स्ट्रीनजेंट पैरामीटरों पर एनोटेड किया गया था। एनोटेड यूनिटिग्स को 52847 जीन ऑनटोलॉजी (जीओ) टर्म्स एवं 554 एंजाइम कोड्स से मापा गया था। यह एन्जाइम विभिन्न

अध्ययन में पाई गई थीं, जो हमारे विश्लेषण के समथर्क प्रमाण हैं। एक फाइलेजेनिक पेड को इस ओथींलाजियस अनुक्रम के उपयोग में भी निर्मित किया गया था, जो प्रदर्शित करता है कि MED तथा MEAM1 पूर्व रिपोर्ट के अनुसार साथ—साथ सामूहित थे, तथापि एच बायोटाइप Asia II3 के साथ सामूहित थे। एच बायोटाइप

तथा Asia II 3 (0.92%) के मध्य भिन्नता MED तथा MEAM1 (0.87%) के मध्य भिन्नता से अधिक थी। परिणम अंकित करता है कि यह स्वतन्त्र किस्म है।

3. व्हाईट पलाई स में एमिनो अम्ल बायोसिथेसिस का विश्लेषणः इस तथ्य से सहजीवी की सम्भावित जरूरतों को भी पूरा करता है। सहजीव एवं एमिनो अम्ल बायोसिंथेटिक पथवेज से कीट संबंधित जीन की अभिव्यक्ति एवं मैपिंग के आधार पर हम व्हाईटफ्लाई में प्रस्तावित एक हाइपोथिकल एमिनो अम्ल बायोसिंथेटिक तथा प्रत्येक के योगदान की भविष्यवाणी करते हैं। हमारा


तालिका 5: व्हाईटफ्लाईस की किस्मों के मध्य अनुक्रम भिन्नता

Species 1	Species 2	Divergence (%)		
Н	MED	1.95		
Н	MEAM1	2.00		
Н	Asia II 3	0.92		
MED	MEAM1	0.87		
MED	Asia II 3	1.70		
MEAM1	Asia II 3	1.75		

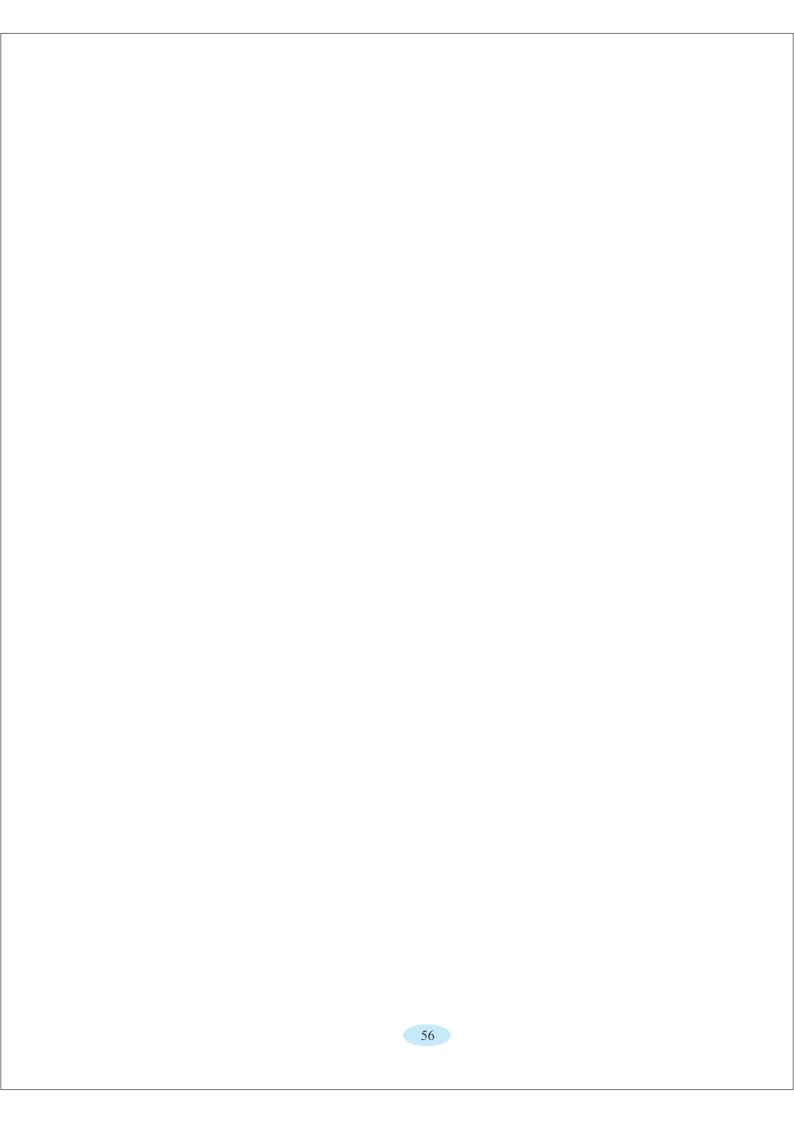
सभी परिचित हैं कि पश् अनिवार्य एमिनो अम्ल बायोसिंथेसिस पथवेज से रहित होते हैं तथा खाद्य स्रोतों से प्राप्त करते हैं। परिपोषी पौधे के फ्लोम रस से रस चूसक कीट अपना भोजन प्राप्त करते हैं, जो अनिवार्य एमिनो अम्लों की बहुत कम मात्रा से युक्त होते हैं। इसलिए यह कीट अनिवार्य एमिनो अम्लों के सिंथेसिस के लिए माइक्रोबायल सिमबायोनेंट पर मुख्यतः आश्रित होते हैं। वापसी में, कीट गैर अनिवार्य एमिनो अम्ल प्रदान करते हैं तथा साइम्बोयोनेंट से अन्य पृथक समर्थित होते हैं। Condidatus Portiera aleyrodidarum (सीपीए) को व्हाईटफ्लाईस के लिए सिमबायोनेंट के रूप में रिपोर्ट किया गया है। हमने व्हाईटफ्लाईस में एमिनी अम्ल बायोसिंथेटिक पथवे तथा इसके सिंबायोनेंट के इंटेग्रेशन को विश्लेषित किया हे। सीपीए का जीनोम विश्लेषण अनुक्रम स्पष्ट रूप से अंकित करता है कि गैर अनिवार्य एमिनो अम्ल के सिंथेसिस के लिए जिम्मेवार जीन पूर्ण रूप से अनुपस्थित है, जो इन एमिनो अम्लों के लिए परपोषी कीट के साथ सहयोग की संभावना को अंकित करते हैं। आगे. हममें व्हाईटफ्लाईस ट्रांसक्रिप्टोम डाटा में इन जींस की महत्वपूर्ण अभिव्यक्ति भी पाई गई है, जो

परिणाम अनिवार्य एवं गैर अनिवार्य एमिनो अम्लो के सिंथेसिस में उनके पूरक तथा दोनों पार्टनरों के प्रेरण को समर्थित करता है क्योंकि फ्लोम इस अनिवार्य एमिनो अम्लों का बहुत घटिया स्रोत है तथा कीट संबंधित जीनों की अनुपस्थिति द्वारा प्रत्यक्ष रूप में सिंथेसाइज (देयरोनाइन तथा मेथियोनाईन को छोडकर) से पूर्ण अक्षम नहीं है, भोष सहजीवी फ्लोम भक्षण कीट से इन एमिनो अम्लों की आपूर्ति के स्रोत हैं। हमने एमिनो अम्ल के सिंथेसिस में युक्त सहजीवी जीनों की अभिव्यक्ति को सार्थक पाया है जो कीट में अनुपस्थित था। आर्जेनिन तथा ट्राइप्टोफान के सिथेंसिस हेतु जिम्मेवार एन्जाइम सहजीवी द्वारा पूर्ण इनकोडेड किए गए हैं तथापि Phenyl-alanine valine, leucine तथा isoleucine के सिंथेसिस के लिए अंतिम एन्जाइम एफिड सहजीवी के मामले में रिपोर्ट के अनुसार अनुपरिथत है। परंतु यह जीन रिमार्केबल अभिव्यक्ति के साथ कीट में उपलब्ध है (चित्र 10)। आगे हमने सहजीवी में मेथिओनाइन, लाइसिन तथ हिस्टाइडिन के बायोसिंथेसिस में सिमलित जीनों का अधिकतम अवलोकन भी किया, तथापि हम ट्रांसक्रिप्टोम तथा जीनोम डाटा में इस एमिनो

चित्र—10 : Bemisia tabaci में एमिनो अम्ल बायोसिंथेटिक पथवे में परपोषी एवं सहजीवी जीनों का संयोजन। पिन्कीश एवं स्काई—ब्ल्यू सर्कल सहजीवी एवं कीट क्रमशः को प्रदर्शित करता है।

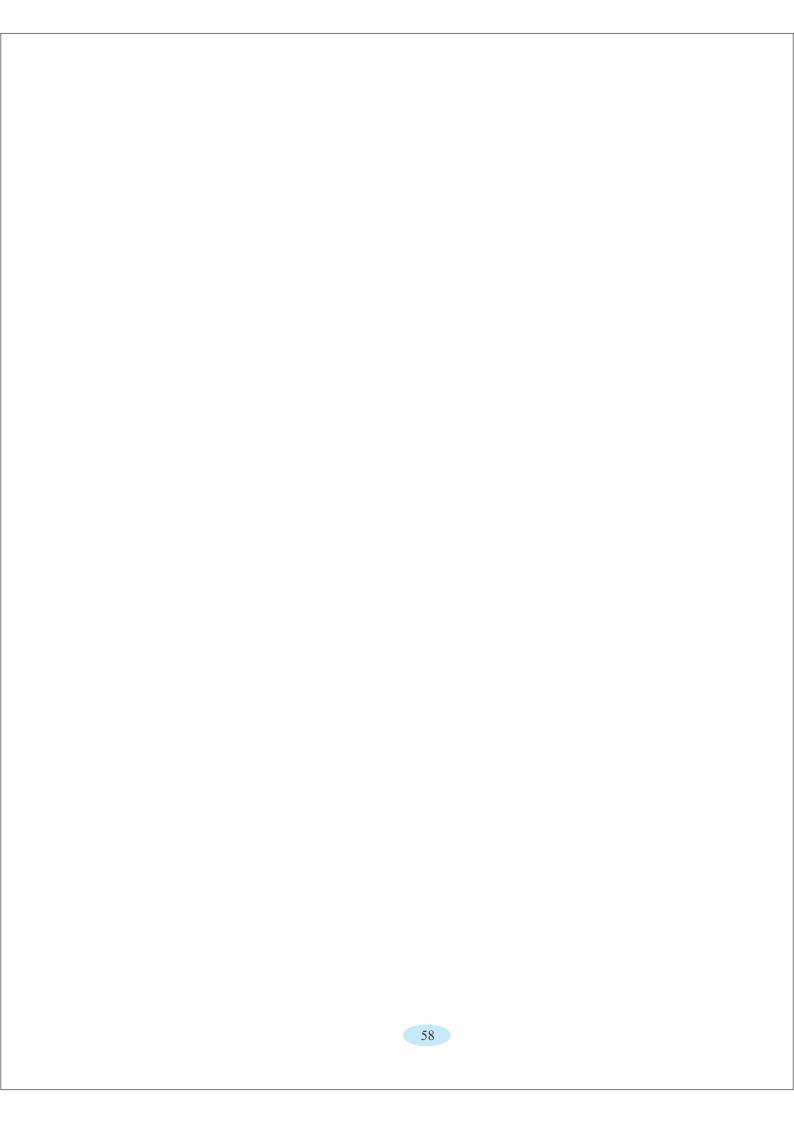
अम्लो के लिए पूर्ण बायोसिंथेटिक पथवे को यह प्राप्त नहीं कर पाए हैं।

4. लोअर प्लांट नमूनों का एकत्रीकरण, आनएनए वियोजन तथा सीडीएनए सिंथेसिसः उपलब्ध साहित्य तथा कीटनाशी प्रोटीनों के विद्यमान के बारे में पूर्व ज्ञान के आधार पर पांच लोअर नमूने (2 bryophytes तथा 3 pterydophytes) एकत्रित किए गए थे। आरएनए वियोजन ताी सीडीएनए सिंथेसिस ने अनुष्ठित किया, जो अध्ययन के परवर्ती भाग में सम्भावित कीटनाशी जीनों के क्लोनिंग एवं विस्तार के लिए उपयोग किया जाएगा।


प्रमुख उपलब्धियां

- व्हाईटफ्लाई एच बायोटाईप का एक व्यापक ट्रांसक्रिप्टोम डाटा विकसित एवं लक्षण वर्णन किया गया है।
- 2. व्हाईटफ्लाईस की विभिन्नता जातियों में से आर्थोलॉयस अनुक्रमों की तुलना की गई है तथा सभी जातियों में पृथकता अंकित की गई है। हमारे देश में मौजूद व्हाईटफ्लाई जातियों की अन्य देश जैसे चीन से रिपोर्ट की गई जातियों से महत्वपूर्ण भिन्नता है।

3. एमिनो अम्ल बायोसिंथेटिक पथवे विश्लेषण कीट एवं इसके सहजीवी के मध्य पूरकीकरण को प्रदर्शित करता है क्योंकि व्हाईफ्लाईज फ्लोम फेड है जिसमें पृथक एमिनो अम्लों का अभाव है। उसे एक वैकल्पिक स्रोत की आवश्यकता होती है, जिसे अफिड के मामले में रिपोर्ट किया गया है। हमारा अध्ययन एमिनो अम्ल बायोसिंथेसिस में सहीजीवी एवं परपोषी के योगदान का प्रमाणन करता है। कीट सहजीवी से ज्यादातर गैर आवश्यक एमिनो अम्ल प्रदान करते हैं तथा वापसी में अनिवार्य एमिनो अम्ल प्राप्त करते हैं।


भावी परिप्रेक्ष्य

- 1. व्हाईटफ्लाई सहजीवी के ट्रांसक्रिप्ट डाटा एवं विस्तृत विशेषीकरण करना।
- 2. लोअर प्लांट्स से नए कीटनाशी प्रोटीन्स इनकोडिंग जींस की क्लोनिंग करना।
- कीटनाशी प्रोटीनों का रिकम्बीनेंट अभिव्यक्ति, प्यूरिफिकेश एवं कैरेक्टराइजेशन करना।
- 4. कीटनाशी एक्शन की विधि का अध्ययन करना।

आहार एवं स्वास्थ्य

4.1 चूहे में उच्च फैट आहार प्रभावित परिवर्तनों पर बाजरा उपभोग का प्रभाव

4.1.1 रेगुलेटिंग एडियोजेनेसिस में बाजरे से नॉन-स्टार्च डायटरी फाइबर की भूमिकाः एक न्यूट्रीजेनोमिक

प्रमुख अन्वेषक कांथी किरण के

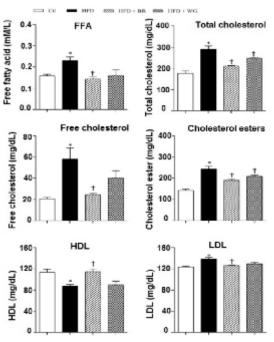
सह—अन्वेषक महेन्द्र बिश्नोई कौशिक मजूमदार

अनुसंधान अध्येता निदा मुर्तजा सिद्धार्थ एम. शर्मा

भूमिका

अधिक कैलोरी ग्रहण भार वृद्धि एवं मोटापा के लिए सहयोग करता है। मोटापा लॉग्रेड सूजन, उपचायक दबाब, एल्टर्ड एडिपोस टिश्यू सीक्रोटोम तथा लाभदायी गट माइक्रोफ्लोरा के साथ संबंधित है। परिणामस्वरूप क्रोनिक रोगों जैसे कि अथेरोस्क्लेरोसिस, डायबीटिज तथा कैंसर के कई रूप मोटापा से संबंधित है। मोटापा-रोधी दवाइयां फोस साइड-इफेक्ट्स से प्रदर्शित भी करते हैं। सुरक्षित एवं वैकल्पिक पहुंच उच्च मांग से है। सभ अनाजों (डब्ल्यूजी) की खपत, पोलिफिनोल्स, नॉन-स्टार्च डायटरी फाईबर्स (एनएसडीएफ) प्रि-बायोटिक्स तथा प्रि-बायोटिक्स से युक्त प्लांट व्युत्पन्न डायटरी मोलिक्युल्स एमिलियोरेटड मोटापा तथा संबंधित जटिलता को प्रदर्शित करता है। बाजरा सभी अनाजों की श्रेणी में आता है तथा डायटरी फाइबर्स प्रोटीन्स, एनर्जी, मिनरल, विटामिनों तथा एंटीऑक्सीडेंट पॉलिफिनॉल्स का भरपूर स्रोत है। लाभदायी प्रभावों के लिए डब्ल्यूजी सहयोग में बायोएक्टिव के साइनर्जिस्टिक प्रभाव अथवा सिंगल बायोएक्टिव है। पूर्व रिपोर्ट में, हमने देखा कि 3टी 3-एल1 एडियोसाइटेन में बाजरा अवरोधन लिपिड संचयन से एनएसडीएफ है। यहां पर हमने चूहे में उच्च फैट आहार (एचएफडी) प्रभाव परिवर्तनों पर सभी अनाज संचयन अथवा फिंगर बाजरा भसी के प्रभाव को भी रिपोर्ट किया है।

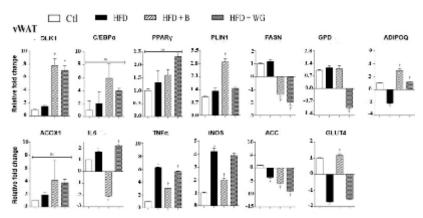
उद्देश्य


- 1. 3टी3-एल1 सैल्स के उपयोग से रेगुलेटिंग एडियोजेनसिज में बाजरे से नॉन-स्टार्च डायटरी (एनएसडीएफ) तथा अन्य बायोएक्टिव्स की भूमिका को समझना।
- 2. उच्च फैट आहार फेड चूहे में सभी अनाज बाजरा, एनएसडीएफ तथा अन्य बायोएक्टिव्स के संचयन के साथ संबंधित न्यूट्रीजेनोमिक परिवर्तन।

अनुसंघान प्रगति

- बॉडी वेट, ऑरल, ग्लुकोज टोलरेंस टेस्ट (ओजीटीसी) तथा ग्लुकोज क्लीयरेंसः एचएफडी ने सामान्य आहार (एनडी) फेड चूहे से तुलनात्मक 12 सप्ताहों के अंत में भारीर के भार वृद्धि को प्रोत्साहित किया। एचएफडी-बीआर फेड चूहा। फेड चूहे के साथ एचएफडी से तुलनात्मक भारीर भार वृद्धि में घटता हुआ प्रदर्शित हुआ, चूंकि एचएफडी-डब्ल्यूजी प्रशासन चूंहा में भारीर भार वृद्धि से नॉन-सिग्निफिकेंट डिक्रीज प्रदर्शित हुआ। खाद्य संचयन विभिन्न समुहों में से परिवर्तनीय नहीं था, ग्लुकोज क्लीयरेंस की दर एचएफडी चुंहे में सीरम में महत्वपूर्ण कम हुई थी, चूकि एचएफडी-बीआर का प्रशासनिक का महत्वपूर्ण क्लीयरेंस कम हुई है तथा कोई महत्वपूर्ण परिवर्तन फेड चूहे के साथ एचएफडी के साथ तुलनात्मक रूप में एचएफडी-डब्ल्युजी में अवलोकित नहीं किया गया था।
- (i) सीरम बायोकैमिकल्स पैरामीटर्सः टोटल कोलेस्ट्रोल (टीसी), कोलेस्ट्रोल इस्टर्स (सीए), फ्री कोलेस्ट्रोल (एफसी), फ्री फेटी एसिड्स (एफएफएएस), एलडीएल / वीएलडीएल—सी अधिक महत्वपूर्ण हैं तथा एचडीएल लेवल एनडी फेड चूहे से तुलनात्मक फेड चूहे के साथ एचएफडी में कम महत्वपूर्ण थे (चित्र 1)। एचएफडी—बीआर के प्रशासन की टीसी, सीई, एफसी, एफएफए तथा एलडीएल / वीएलडीएल—सी के लेवलों में महत्वपूर्ण बाधक वृद्धि हुई तथा एचएफडी फेड चूहा से तुलना के रूप में एचडीएल—सी के लेवलों में बाधक कमी

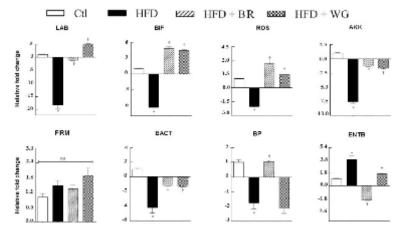
हुई (चित्र 1)। टीसी एवं सीई में एचएफडी डब्ल्युजी प्रशाासनिक महत्वपूर्ण बाधक वृद्धि हुई, चुंकि एफसी, एलडीएल / वीएलडीआई-सी तथा एफएफए के लेवलों में गैर-महत्वपूर्ण कमी आई है तथा एचएफडी फेड चूहे से तुलनात्मक एचडीएल-सी लेवलों में कोई महत्वपूर्ण परिवर्तन अवलोकित नहीं किया गया (चित्र 1)।


आईएल1β, लेप्टिन तथा घरीलीन के सीरम लेवलों का एचएफडी प्रोत्साहन। एचएफडी-डब्ल्यूजी प्रशासनिक उनके वृद्धि में महत्वपूर्ण बाधक है। एनडी फेड माइस से तुलनात्मक के

चित्र-1: सीरम लिपिड प्रोफाइल पर HFD, HFD-BR तथा HFD-WG का प्रभाव। ctl= control. HFD= High Fat Diet, BR= Bram, WG= Whole Grain, ns= nonsignificent.

रूप में एचएफडी निर्थक कम एडिपोनेक्टिन लेवल है। एचएफडी-बीआर तथा एचएफडी-डब्ल्युजी फिडिंग वृद्धि इसके लेवल में हुई परन्तु परिवर्तन महत्वपूर्ण नहीं था।

आन्तरॉग सफेद वसा टिश्यू (वीडब्ल्यूएटी) जीन अभिव्यक्ति पर प्रभावः डीएलके 1, सी / ईबीपी α, पीपीएआरवाई तथा पीएलआईएन1 का एचएफडी गैर महतवपूर्ण अप रेग्लेटिड अभिव्यक्ति तथा एनडी फेड माइस से तुलनात्मक महत्वपूर्ण न्यून एडिपोनेक्टिन अभिव्यक्ति (चित्र-2)। एचएफडी–बीआर तथा एचएफडी–डब्ल्यूजी पुरकीकरण पीपीएआरवाई तथा सी / ईबीपी α के अभिव्यक्ति लेवलों को परिवर्तित नहीं करता है। एचएफडी—बीआर प्रशासनिक महत्व अकेले एचएफडी से तुलना के रूप में डीएलके1, पीएलआईएन1 तथा एडीआईपीओक्यू के लेवलों की वृद्धि अभिव्यक्त करता है। एचएफडी—डब्ल्यूजी प्रशासनिक महत्व एचएफडी फेड माइस से तूलना के रूप में वृद्धि डीएलके 1 तथा एडीआईपीओक्यू अभिव्यक्ति है (चित्र 2)। एक गैर महत्वपूर्ण वृद्धि एचएफडी फेड माइस से त्लना के एचएफडी-डब्ल्यूजी सप्लिमेंटेड माइस में पीएलआरएन1 अभिव्यक्ति में अवलोकित किया गया था (चित्र 2)। एचएफडी महत्वपूर्ण डाऊन-रेगुलेटिड एजीसी एवं जीएलयूटी4 है तथा वृद्धि एफएएसएन अभिव्यक्ति एनडी फेड माइस से तुलनात्मक है (चित्र 2)। जीएलयुटी 4 अभिव्यक्ति एचएफडी-बीआर प्रशासनिक एवं एफएएसएन में महत्वपूर्ण अप-रेगुलेटिड है तथा एसीसी अभिव्यक्ति एचएफडी अकेले फेड माइस से तूलनात्मक डाऊन-रेगुलेटिड था (चित्र 2)। एचएफडी— डब्ल्यूजी पूरकीकरण महत्वपूर्ण एसीसी तथा एफएएसएन का डाऊन रेगुलेटिड अभिव्यक्ति है चूंकि जीएलयूटी4 की गैर महत्वपूर्ण वृद्धि अभिव्यक्ति है (चित्र 2)। एचएफडी-बीआर एवं एचएफडी-डब्ल्यूजी समूहों में एसीओएक्स1 प्रदर्शक वृद्धि अभिव्यक्ति, तथापि वृद्धि एचएफडी अथवा एनडी फेड माइस से तुलनात्मक रूप में महत्वपूर्ण नहीं है। एचएफडी फीडिंग महत्वपूर्ण एनएफ α तथा आईएनओएस की अप-रेग्लेटिड अभिव्यक्ति है, चूंकि गैर-महत्वपूर्ण वृद्धि एनडी फेड माइस से त्लनात्मक रूप में आईएल 6 के लेवलों में अवलोकित किया गया था। एचएफडी–बीआर का प्रशासन उनकी अभिव्यक्ति महत्वपूर्ण डाऊन रेग्लेटिड है, चूंकि एचएफडी-डब्ल्यूजी पूरकीकरण टीएनएफ α तथा आईएनओएस की



चित्र—2: वीडब्ल्यूएटी में जीन अभिव्यक्ति पर एचएफडी, एचएफडी—बीआर तथा एचएफडी—डब्ल्यूजी संचयन का प्रभाव। सीटीएल = कंट्रोल, एचएफडी = हाई फैट डाइट, बीआर = ब्रान, डब्ल्यूजी = होल ग्रेन।

महत्वपूर्ण डाऊन—रेगुलेटिड अभिव्यक्ति है तथा एचएफडी फेड माइस से तुलनात्मक रूप में आईएल6 का अपरेगुलेटिड अभिव्यक्ति है (चित्र 2)।

- 3. चयनित गट माइक्रोबायडाटा समूहों पर प्रभावः Lactobacillus, Bifidobacteria, Roseburia, Akkermansia, Bacteroidetes तथा Bacteroides- Prevotella बहुलता महत्वपूर्ण कम की गई तथा एंटरोबेक्टर एवं फर्मिक्यूट्स बहुलता को एनडी की तुलना में एचएफडी फीडिंग में वृद्धि की गई थी (चित्र 3)।
- एचएफडी—बीआर तथा एचएफडी— डब्ल्यूजी को एचएफडी से तुलना के रूप में लेक्टोबेसिल्स, विफिडोबैक्टेरिया एवं रोजब्रिया

बहुलता महत्वपूर्ण प्रोत्साहक है (चित्र 3)। एचएफडी फेड माइस से तुलना के रूप में एचएफडी—बीआर तथा एचएफडी—डब्ल्यूजी प्रशासनिक महत्वपूर्ण निवारक कमी है। बैक्टेरोइड्स—प्रीवोटेला बहुलता एचएफडी अथवा एचएफडी—डब्ल्यूजी फेड माइस से तुलना के रूप में एचएफडी—बीडी पूरकीकरण माइस में महत्वपूर्ण मरम्मत है (चित्र 3)। फार्मिक्यूट्स एचएफडी—बीआर माइस में एक गैर—महत्वपूर्ण कमी प्रदर्शित करता है। तथापि, फार्मेक्यूट्स में एक वृद्धि ट्रेड को एनडी फेड माइस से तुलना के रूप में एचएफडी अथवा एचएफडी—डब्ल्यूजी फेड माइस में अवलोकित

चित्र—3 : केसियम में संबंधित बैक्टेरियल बहुलता पर एचएफडी, एचएफडी—बीआर एवं एचएफडी—डब्ल्यूजी संचयन का प्रभाव। सीटीएल = कंट्रोल, एचएफडी = हाई फैट डाइट, बीआर = ब्रान, डब्ल्यूजी = होल ग्रेन, बीएसीटी = बैक्टेरोइडेंट्स, फर्म =फर्मिक्यूट्स, लैब = लेक्टोबैसिल्स, बीआईएफ = बिफिडोबेक्टेरिया, ईएनटीबी = इन्टेरोबेक्टर, आरओएस = रोजबुरिया, बीपी = वेक्टरोइड्स प्रीवोटेला, ए के के = अक्करमानसिया, एनएस = नॉन—सिग्निफकेंट।

किया गया था (चित्र 3)।

प्रमुख उपलब्धियां

- एफएम—बीआर निरोधक भारीर भार वृद्धिः एचडीएल-सी की वृद्धि तथा एलडीएल / वीएलडएल-सी लेवलों की कमी।
- वीडब्ल्यूएटी में एंटी-एडियोजेनिक मार्करों की अभिव्यक्ति की वृद्धि की गई, हाई फैट फेड माइस में गट माइक्रोफ्लोरा में प्रीबायोटिक परिवर्तन तथा प्रोइंफ्लामेटरी स्टेट्स में कमी की गई है।

भावी परिप्रेक्ष्य

- उच्च फैट आहार प्रभावित परिवर्तनों पर अन्य बाजरों का प्रभाव।
- नॉन-स्टार्च डायटर फाइबर्स (एनएसडीएफ) तथा विट्रो में एडियोजेंसिस पर बाजरेसे अन्य बायोएक्टिव्स की भूमिका। उच्च फैट आहार प्रभावित मोटापा रोडेंट मोडलस उपयोग से बाजरे से अन्य बायो एक्टिव्स एवं एनएसडीएफ का न्यूट्रीजीनोमिक प्रभाव।

4.1.2 डायटरी मोलिक्यूल्स द्वारा एडिपोर्नेसिस एवं मोटापा का ट्रांसिएंट रिसेप्टर पोटेंशियल (टीआरपी) चेनल मेडिएटेड मोड्युलेशन

प्रमुख अन्वेषक

महेन्द्र बिश्नोई

सह-अन्वेषक

काथी किरन के

अनुसंघसान अध्येता

रितेश के बबूता धीरेन्द्र प्रताप सिंह याचना जैन प्रज्ञांश् खरे

भूमिका

मौजुदा मोटापा-रोधी दवाईयां फार्माकोलॉजिकल एजेंट हैं, जो मानव भारीर से भार विनियमन की आधारित प्रक्रियाओं के एक प्रभाव द्वारा कम अथवा भार नियंत्रित कर सकते हैं अर्थात अल्टरिंग एपट्टियुट, मेटावोलिज्म अथवा कैलोरिज का संचयन ऑरलिस्टेट, टिमोनाबांट तथा सिबट्रामाईन से युक्त यह सभी दवाईयां डिप्रेशन तेलिये आंत गतिविधियां, कार्डियोवेस्कयुलर संबंधित एवं स्टेटोरहोआ के साथ अलग–अलग साइड इफेक्ट होते हैं। इन दवाईयों की संभावित साइड इफेक्ट प्रोफाइल इनके लाभ प्रभावों की अपेक्षा अधिक हे, वैकल्पिक हेतू अत्यावश्यकता हेत सुझाव दिया जाता है। वर्षों में यह देखा गया है कि अधिक भार एवं मोटापा हेत् अच्छा एवं प्रभावकारी विकल्प व्यक्तिगत भोष आहार एवं भारिरिक व्यायाम है। यह उपचार के लिए खोज की अपेक्षा बल्कि बाध्यकारी जीवन भौली कठिनाईयों से डायटरी विनियमन महत्वपूर्ण है। उपलब्ध साहित्य सुझाव देता है कि सेंसरी आईओएन चैनल रिसिप्टर सिस्टम, ट्रांजिट रिजीरटर पोटेंशियल (टीआरपी) चैनल, रेगुलेट एनर्जी मेटाबोलिज्म एवं थर्मोजेंसिस से उम्मीदवा संभव है, जो मोटापे वाय विभिन्न मैकेनिज्म के निवारण एवं कैलोरी संचयन से अग्रणी हो सकता हे। सामान्य डायटरी संघटकों जैसे कि काली मिर्च. काली मिर्च, लौंग, लहसून, दालचीनी, पुदिना तथा अनेक संघटकों (कैंपसाइसिन, पिपराइन, ओगनोल, एलिसिन, सिनामेल्डेहाइड, ओमेगा, फैटटी एसिड, मेंथोल आदि) मोड्यूलेट टीआरपी चैनल्स हो सकते हैं। इस प्रस्ताव में हम एडिपोजेनिसस मोटापा तथा इन-विट्री एवं इन-विवो मॉडल सिस्टम उपयोग से संबंधित समस्याओं में टीआरपी चैनलों की भिमका को समझेंगे। आगे, टीआरपी चैनल रिसिप्टर सिस्टम के उपयोग से हमारा उददेश्य डायटरी संघटकों के साथ उठाना है, जो एडिपोजेनसिस की प्रक्रिया के साथ संबंधित मॉलिक्युलर मैकेनिज्म को मॉडयुलेट कर सकता है।

उद्देश्य

- वाणिज्यिक उपलब्ध माउस प्रिडाइपोसाइट्स सैल लाइन्स (3टी 3-एल) मानव प्रिडाइपोसाइट्स (एचपीएडी) तथा एडिपोसाइट्स (एचडी) सैल्स में टीआरपी चैनल्स की अभिव्यक्ति, फंक्शन एवं अर्थ का निर्धारण करना।
- एडिपोजेनसिस एवं इससे संबंधित परिवर्तनों पर

टीआरपी चैनल मॉडयूलेशन के प्रभाव का निर्धारण तथा एडिपोजेनसिस पर आधारित मोलिक्युलर का इन—विट्रो विशेषता।

- 3. मोटापा के इन विवो माउस मॉड आधारित एक आधार (हाई फैट) में भार वृद्धि, सीरम बायोकैमिस्ट्री तथा एडीपोस टिश्यू जीनोटाइप पर टीआरपी चैनल (टीआरपीवी1 : कैपसाइसिन, पाइपराइन, टीआरपी1: गार्लिक, सिनामोन, टीआरपीएम8 : मेनथॉल, टीआरपीसी1: ओमेगा—3 फैट्टी एसिड्स एवं अन्य) के डायटरी मॉड्यलेशंस के प्रभावों का अध्ययन करना।
- 4. मॉड्यूलेटिंग खाद्य संघटकों का संघटित विकास आहार / विशेष डायटरी प्रतिपादन करना तथा मानव प्रयोग में संबंधित कठिनाईयों तथा एडिपोजेनसिस, मोटापा पर इसके प्रभावों का अध्ययन करना।

अनुसंधान प्रगति

पहले हमने पाया कि मल्टीपल टीआरपी चैनल जीन माउस उटी3–एल1 प्रिडिपोसाइट्स में अभिव्यक्त हुए हैं। आगे, यह चैनल म्यूराईन सफेद वसा टिश्यू (डब्ल्युएटी) तथा भूरी वास टिश्यू (बीएटी) में भी अभिव्यक्त है। यह चैनल प्रिडाइपोसाइटस (मोड्रेट अभिव्यक्ति से उच्चः टीआरपीवी1. टीआरपीसी6. टीआरसी1, टीआरपीवी4, टीआरपीवएम2, टीओपिविव, टीआरपीसी4, निम्न अभिव्यक्तिः टीआरपीएम7, टीआरपीएम3, टीआीपीएम5, टीआरपीवी६, टीआरपीए1) में भी मौजूद है। टीआरपीवी1, टीआरपीवी1 तथा टीआरपीवीएम8 जीनका विवेचित विश्लेषण एडिपोसाइट विभिन्नताओं के साथ इन जीनों का घटना अभिव्यक्त करता है. विभिन्न प्रक्रियाओं (वार्षिक प्रतिवेदन- 2012-2013) में इन चैनलों की भूमिका का सुझाव प्रदान करता है। टीआरपीवी1 की भूमिका में से अग्रणी, हमने कैपसाइसिन, एक टीआरपीवी1 एगोनिस्ट के लिए प्रारंभ एवं पूर्ण इन–विट्रो (3टी3एल 1 प्रिडाइपोसाइट सैल लाइन्स) तथा इन-विवो (वृद्धि मॉडल) अध्ययन किया गया है।

1. *इन-विट्रो* अध्ययनः टीआपीवी1 चैनल

प्रिडाइपोसाइटस में फैक्शली अभिव्यक्त किया गया था परंतु एडिपोसाइट्स में नहीं था। कैपसाइसिन एवं आरटीएक्स डोज डिपेंडेंटली प्रिडाइपोसाइट्स में सीए 2+ इन्पालक्स वृद्धि हुई, जो कैपसाइजेपाइन, एक टीआरपीवी1 एंटागोनिस्ट द्वारा निरोधक थी। लोअर डोजिज (0.1-1 यएम) पर कैपसाइसिन इनहिबिटेड लिपिड संचयन है, चूंकि यह (10–100 यूएम) उच्चतर डोजिज पर वृद्धि संचयन है। टीआरपीवी1 जीन अभिव्यक्ति भी लोअर डोजिज पर वृद्धि थी तथा उच्चतर डोजिज पर घटा था, प्रिडाइपोसाइट्स की उपस्थिति के साथ इसके संबंध का सुझाव दिया गया है। कैपसाइसिन (0.1–100 यूएम) ने प्रमुख प्रो-एडिपोजेनिक जीन, पीपीएआरवाई तथा इससे संबंधित कुछ डाऊस्ट्रीम जीनों को प्रोत्साहित किया। कैपसाइसिन (1युएम) अपरेगुलेट एंटी- एडिपोजेनसिस जीन। आगे, एडिपोसाइटस में से 3टी3-एल1 प्रिडोपाइसाइटस की विभिन्नताओं के दौरान भरे फैट सैल मार्कर जीनों में लोअर डोज महत्वपूर्ण वृद्धि पर कैपसाइसिन थे। समान टिप्पणी पर, माइस डब्ल्यूएटी में ब्राउनिंग निर्दिष्ट जीनें में वृद्धि से कैपसाइसिन प्रशासनिक अग्रणी है। ग्लोबल टीआरपीवी1 एबलाशन (आई.पी.आरटीएक्स प्रशासन) लोकोमीटर गतिविधि में वृद्धि तथा भारीर भार में परिवर्तन न होने का अग्रणी है।

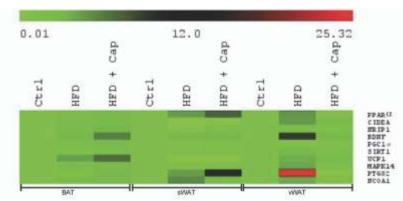
- 2. इन—विवो अध्ययनः एचएफडी—फेड माइस से तुलनात्मक रूप में कैपसाइसिन महत्वपूर्ण बाधा भार वृद्धि का ओरल एडिमिनिस्ट्रेशन। सीरम लेप्टीन तथा टीएनएफ α को नियंत्रण माइस से तुलना में एचएफडी—फेड माइस में महत्वपूर्ण वृद्धि हुई थी। तथापि, एचएफडी के साथ कैपसाइसिन का को—एडिमिनिस्ट्रेशन में महत्वपूर्ण बाधा जारी हुई। एचएफडी एडिपोनेक्टीन लेवल पर महत्वपूर्ण निर्माण हुआ, जो कैपसाइसिन को—एडिमिनिस्ट्रेशन द्वारा बाधित था।
- 3. हाइपोथाल्मिक जीन अभिव्यक्ति पर कैपसाइसिन का प्रभाव : माइस के अर्कूएट

न्यूक्ल्यूस एवं हाइपोथाल्मस में टीआरपीवी1 इम्यूनोरिएक्टिविटी की इम्यूनोफ्लोरेसेंस इमेजिंग व्यापक अभिव्यक्ति प्रदर्शित करती है। टीआरपीवी1 कंट्रोल माइस को हाइपोथाल्मस में अभिव्यक्त था जबिक इसकी अभिव्यक्ति एचएफडी-फेड माइस में महत्वपूर्ण डाऊन रेगूलेटिड थी। तथापि, कैपसाइसिन वृद्धि एचएफडी-फेड माइस में कट्रोल से तुलनात्मक लेवलों को अभिव्यक्त करती है। एनोरेटिक जीन जैसे कि यूसीएन, पीवाईवाई, आरएएमपी3, जीआरपी, बीडीएनएफ तथा सीएआरटीपीटी कंट्रोल ग्रुप से तुलनात्मक रूप में एचएफडी-फेड माइस में महत्वपूर्ण डाऊन-रेग्लेटिड थे, जबकि इसकी अभिव्यक्ति एचएफडी + फेड ग्रुप में महत्वपूर्ण वृद्धि हुई थी। एचएफडी महत्वपूर्ण वृद्धि ऑरेक्सिजेनिक जीनों जैसे सीएनआर1, जीएएलआर1. जीएचआरएल. एडीआरए2बी. एनपीवाई 1 आर तथा जीएएचएस आर से अभिव्यक्त है। तथापि, इनकी अभिव्यक्ति एडीआरए2बी तथा एनपीवाई1आर के लिए छोड़कर एचएफडी + कैपसाइसिन ग्रुप में महत्वपूर्ण कमी थी। एचएफडी ग्रुप में एनपीवाई अभिव्यक्ति लेवलों में कोई अवलोकन नहीं किया गया था, जबकि इसकी अभिव्यक्ति एचएफडी + कैपसाइसिन ग्रुप में महत्वपूर्ण वृद्धि हुई थी।

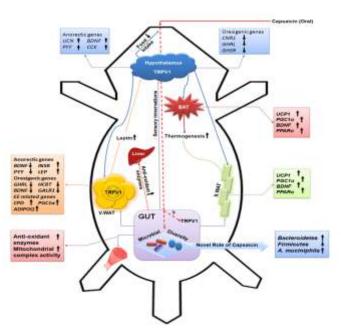
4. आंतरांग डब्ल्यूएटी में जीनों से संबंधित ऊर्जा खर्च एवं एनोरेक्टिक, ऑरेक्सिजेनिक पर कैपसाइसिन पूरकीकरणः एनारेक्टिक जीन्स जैसे कि बीडीएनएफ, डीआरडी1ए , डीआरडीए2 तथा पीवाईवाई कंट्रोल से तुलनात्मक रूप में एचएफडी ग्रुप में महत्वपूर्ण अप—रेगुलेटिड था, जबिक अभिव्यक्ति लेवल में महत्वपूर्ण कमी एचएफडी + कैपसाइसिन ग्रुप में अवलोकित किया गया था। ऑरेक्सिजेनिक जीन्स जीएएलआर1, एचसीआरटी तथा एनआर3सी1 का एचएफडी महत्वपूर्ण अप—रेगुलेटिड अभिव्यक्ति लेवल जिस पर कैपसाइसिन एडिमिनिस्ट्रेशन को एचएफडी ग्रुप से तुलनात्मक रूप में महत्वपूर्ण कमी हुई थी।

कट्रोल से तुलनात्मक रूप में एचएफडी ग्रुप में जीएचआरएल तथा एचसीआरटीआर1 के अभिवव्यक्ति लेवलों में कोई परिवर्तन अवलोकित नहीं किया गया था परंतु यह एचएफडी +कैप ग्रूप में महत्वपूर्ण कमी थी। जीनों जैसे कि एडीसीवाईएपी1आर1, एडीआईपीओक्यू, एडीआईपीओआर1, एडीआईपीओआर2 तथा सीपीडी से संबंधित ऊर्जा खर्च कंट्रोल ग्रुप से तुलनात्मक रूप में एचएफडी ग्रुप में महत्वपूर्ण कम थे, जबकि कैपसाइसिन एडिमिनिस्ट्रेश उनके लेवलों पर महत्वपूर्ण निर्मित हुए थे। मेटावोलिक जीनों अर्थात एफएसएसएन, जीपीडी1 तथा एसीओएक्स1 की अभिव्यक्ति लेवलों में एचएफडी1 प्रभाव परिवर्तनों में कैपसाइसिन पूरकीकरण का प्रभाव एसडब्ल्यूएटी तथा बीडब्ल्यूएटी में मूल्यांकित किया गया था। एसीओएक्स1 के लिए बीडब्ल्यूटी को छोड़ने में एसडब्ल्यूएटी में सभी तीन जीनों के एचएफडी महत्वपूर्ण डाऊन रेगुलेटिड अभिव्यक्ति लेवलों में, जबकि कोई महत्वपूर्ण परिवर्तन अवलोकित नहीं किया गया। एसडब्ल्यूएटी तथा बीडब्ल्यूएटी में एसीओएक्स1 तथा जीपीडी1 का कैपसाइसिन पूरकीकरण महत्वपूर्ण व्यापक अभिव्यक्ति लेवला एफएएसएन एसडब्ल्यूएटी में महत्वपूर्ण वृद्धि हुई थी जबिक बीडब्ल्यूएटी में कोई महत्वपूर्ण परिवर्तन अवलोकित नहीं किया गया था।

5. बीएटी, अधस्त्वचीय डब्ल्यूएटी तथा आंतरांग डब्ल्यूएटी में ''ब्राउनिंग'' जीनों पर कैपसाइसिन पूरकीकररण का प्रभावः बीएटी में, कंट्रोल एनिमल्स से तुलनात्मक रूप में ''ब्राउनिंग'' जीनों की एचएफडी महत्वपूर्ण वृद्धि अभिव्यक्ति, जबिक इनकी अभिव्यक्ति लेवल कैपसाइसिन एडिमिनिस्ट्रेश द्वारा आगे वृद्धि हुई थी। इसी प्रकार, वीडब्ल्यूएटी में यह जीन एचएफडी—फेड माइस में महत्वपूर्ण वृद्धि हुई थी, परंतु कंट्रोल ग्रुप से तुलनात्मक रूप से कैपसाइसिन ट्रीटेड ग्रुप में कोई महत्वपूर्ण परिवर्तन अवलोकित नहीं किया गया था। इन जीनों के अभिव्यक्ति लेवलों में विभिन्न प्रवृत्तियों एसडब्ल्यूएटी में अवलोकित


की गई थी। बीडीएनएफ, एनसीओए1, पीपीएआर α तथा पीटीजीएस2 बीएटी अर्थात एचएफडी ग्रुप में अभिव्यक्ति में महत्वपूर्ण अभिव्यक्ति के समान पैटर्न को प्रदर्शितर करता है तथा एचएफडी +कैप में आगामी वृद्धि, जबिक यूसीपी1, एनआरआईपी1, सीआईडीइए, पीजीसीआई α , एमपीएके 14 तथा एसआईआरटी2 के कंट्रोल से तुलनात्मक रूप से एचएफड ग्रुप में महत्वपूर्ण डाऊन—रेगुलेटिड किया गया था, जबिक एचएफडी + कैप ग्रुप में महत्वपूर्ण वृद्धि हुई (चित्र 4)।

कैकम में विभिन्न बैक्टेरियल समूहों पर कैपसाइसिन का प्रभावः Enterobacteriaceae तथा फर्मिक्यूटस बहुलता कंट्रोल से तुलनात्मक रूप से एचएफडी-फेड माइस के कैकल कटेट्स में उच्चतर महत्वपूर्ण था। कैपसाइसिन पूरकीकरण महत्वपूर्ण निरोधक यह वृद्धि है। अक्करमानिया, बैक्टेरियोडेट्स, बैक्टेरियोडेस प्रीवोटेला की बहुलता कंट्रोल से तुलना में एचएफडी समूह में कम महत्वपूर्ण थी। इनकी बहुलता में महतवपूर्ण वृद्धि एचएफडी + कैपसाइसिन समूह में अवलोकित किया गया था। बिफिडोबैक्टेरिया तथा लेक्टोबैसिल्स बहुलता नियंत्रण से तुलनात्मक रूप से एचएफडी समृह में महत्वपूर्ण वृद्धि हुई थी। बिफिडोबैक्टेरिया आगे महत्वपूर्ण कमी प्रदर्शित करता है जबकि लेक्टोबसिल्स एचएफडी समूह से तुलनात्मक रूप से एचएफडी + कैपसाइसिन समूह में उच्चतर महत्वपूर्ण पाया गया था। संक्षेप में, हमारा


इन—विवो अध्ययन सुझाव प्रदान करता है कि अतिरिक्त में, इसके प्रभावों से परिचित हैं, कैपसाइसिन का ऑरल एडिमिनिस्ट्रेशन (ए) मोड्यलेट्स हाइपोथाल्मिक सटाइटी संबंधित जीनोटाइप, (बी) अल्टर्स गट—माइक्रोबायल कम्पोजिशन, (सी) सबक्यूटेनियस डब्ल्यूएटी में इनडयूसिस ''बाउिनंग'' जीनोटाइप (बीएटी संबंधित जीन) तथा (डी) बीएटी में थर्मोजेनिसस एवं मिटोकोंड्रियल बायोजेंसिस जीनों की वृद्धि अभिव्यक्ति।

प्रमुख उपलब्धियां

- हमारे इन—विट्रो एडिपोजेंसिस में कैपसाइसिन की द्विदिशी मोड्यूलेटरी भूमिका का अधिगम सुझाव प्रदान करते है। 3टी3—एल1 वाय टीआरपीवी1 एक्टिवेशन तथा ब्राउन जैसे जीनोटाइप के प्रभावों में कैपसाइसिन इनहिबिट्स एडिपोजेंसिस।
- 2. हमारा इन विट्रो अधिग्रम सुझाव प्रदान करता है कि सबक्यूटेनियस डब्ल्यूएटी में कैपसाइसिन मोड्यलेट्स हाइपोथाल्मिक सटाइटी संबंधित जीनोटाइप, अल्टर्स गट—माइक्रोबायल कम्पोजिशन, इनड्यूरड ''ब्राउनिंग'' जीनोटाइप (बीएटी संबंधित जीन्स) के ऑरल एडिमिनिस्ट्रेशन तथा बीएटी में थर्मोजेंसिस तथा एडिमिनिस्ट्रेशन तथा बीएटी में थर्मोजेंसिस तथा एडिमिनिस्ट्रेशन तथा बीएटी में थर्मोजेंसिस तथा मिटोकोंड्रायल बायोजेंसिस जीनों की वृद्धि अभिव्यक्ति है। यह जांच कैपसाइसिन के एंटी ओबिसिटी प्रभाव वर्णन से रोचक मैकेनिज्म तथा नोवल के लिए प्रमाणिकता प्रदान करती है।

चित्र—4: बीएटी, एसडब्ल्यूएटी तथा बीडब्ल्यूएटी में ब्राउनिंग जीनों (मिटोकोंड्रियल बायोजेंसिस तथा थर्मोजेंसिस संबंधित जीनों) में एचएफडी प्रभावित परिवर्तनों पर कैपसाइसिन का प्रभाव।

चित्र—5: स्कीमेटिक डायग्राम, जो एचएफडी प्रभावित ओबेस माइस में कैपसाइसिन के एक्शन की प्रस्तावित विधि का वर्णन करता है। कैपसाइसिन पूरकीकरण, वाय गेस्ट्रोइनटेस्टिनल टीआरपीवी1 एक्टिवेशन अथवा वैजल एफेरेंट एक्टिवेशन प्रभाव हाइपोथाल्मिक टीआरपीवी1 हाइपोथाल्मस में, यह अल्टर्स एनोरेक्टिक एवं ऑरेक्सिजेनिक जीन है। प्रभावित हाइपोथाल्मिक एक्टिविटी प्रभावित एसएनएस एक्टिवेशन, जो वीडब्ल्यूएल में मोटापा मार्करों में कमी तथा वीएटी एवं एसडब्ल्यूएटी में एनक्रीज थर्मीजेंसिस के लिए जिम्मेवार हो सकता है। कैपसाइसिन रक्त में से वीडब्ल्यूएटी तथ एसडब्ल्यूएटी वाय डायरेक्ट सोखने में सीधे जीन परिवर्तन प्रभावित कर सकता है। न सोखे गए कैपसाइसिन गट माइक्रोबायल पोपुलेशन में लाभदायक अल्ट्रेशन का अग्रणी है।

भावी परिप्रेक्ष्य

- इन—विट्रो अध्ययन एडिपोजेसिस तथा इससे संबंधित परिवर्तनों में अन्य टीआरपी चैनलों (अर्थात टीआरपीए1, टीआीपीएम8, टीआरपीवी2 तथा टीआरपीसीआई) की भूमिका समझने से है।
- मोटापा के इन विवो माइस मॉडल आधारित एक आधार (हाई फैट) में भार वृद्धि, सीएम बायोकैमिस्ट्री तथा टिश्यू जीनोटाइप पर अन्य टीआरपी चैनलों (टीआरपीए1: गार्लिक, सिनामोन; टीआरपीएम 8; मेन्थॉल; टीआरपीसी1; ओमेगा—3 फैटी एसिड्स तथा अन्य) के डायटरी मोड्यूलेशनों के प्रभावों का अध्ययन करना ।
- 3. कैपसाइसिन अध्ययनों का प्रिक्लीनिकल एवं क्लीनिकल फॉलो—आप करना।

4.1.3 बाजरा एवं इसके जैविकी गतिविधि से एराबिनोजाइलांस की संरचनात्मक विशेषता

प्रमुख अन्वेषक कौशिक मजुमदार

अनुसंधान अध्येता

वंदना बिजालवां

भूमिका

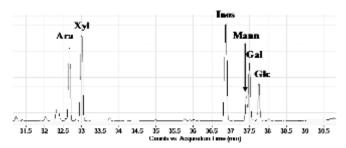
बाजरा, विश्व में मुख्य आहार है, जो घुलनशील आहारीय फाइबर का प्रमुख स्रोत है। महामारी संबंधी विभिन्न अध्ययनों ने स्पष्ट किया है कि घुलनशील आहारीय फाइबर का संचयन वृद्धि कार्डियोवास्क्युलर बिमारियां तथा डायबिटिज के जोखिम कम करने के साथ संबंधित है। जीवनशैली से संबंधित कई रोग एवं क्रोनिक बिमारियां उपचायक दबाव के साथ संबंधित होती है, जो फ्री रेडिकल निर्माण के साथ संबंधित हैं।

फिनोलिक अम्ल जैसे कि पेरयूलिक अम्ल एवं अन्य हाईड्रोक्सी—सिनामिक अम्ल (एचसीए) बहुत स्ट्रोंग एंटीऑक्सीडेंट एक्टीविटी प्रदर्शित करता है जो रेडिकल चेन रिएक्शन को समाप्त करती है। बाउंड रूप में एचसीए सैल वॉल एराबिनोजाइनान पॉलिसक्राइड्स व इंफ्ल्युएंस इसके फिजिकोकेमिकल तथा फंक्शनल संपत्तियों से इस्टेरिफाईड है। अधिक रोचक हाइड्रोक्सी—सिनामिक अम्ल बाउंड

एराबिनोमिक्सजाईलन (एचएसए—एएक्सएस) जैसे अनाज ग्रेन प्रदर्शित स्ट्रोंगर एंटीऑक्सीडेंट के सैल वॉल कम्पोनेंट अम्ल मुक्त है। इसलिए वर्तमान अध्ययन में, फिंगर मिलेट (एफएम), कीडो मिलेट (केएम), बर्नयार्ड मिलेट (बीएम), फोक्सटेल मिलेट (एफओएक्सएम), प्रोसो मिलेट (पीएम) तथा इसकी एंटीऑक्सीडेंट एक्टीविटी से हाइड्रोक्सी—सिनामिक ए सिड बाउंड एराबिनो किस जाइलान्स (एचसीए—एएक्सएस) के उत्कृष्ट संरचना इन विट्रो मॉडल उपयोग से मूल्यांकित की जाएंगी। वर्तमान अध्ययन एचसीए—एएक्स के साथ आहारीय फाइबर प्रचुरता पर आधारित न्यूट्रासीयूटिकल स्वस्थ आहारों की तैयारी में लाभ प्रदान कर सकता है।

उददेश्य

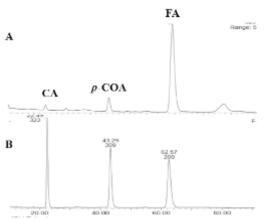
- विभिन्न भारतीय मिलेट्स के सैल वॉल्स से एचसीए बाउंड एराबिनोजाइलान्स का वियोजन एवं भाुद्धीकरण करना।
- उनके एंटीऑक्सीडेंट पोटेंशियल से संबंध के साथ संरचना—फंक्शन संबंध समझने से विभिन्न भारतीय मिलेट्स से एचसीए बाउंड न्यूट्रल एवं एसिडिक एराबिनोजाइलान्स की तुलनात्मक संरचना तथा इन—विट्रो अध्ययन करना।


अनुसंधान प्रगति

हमारे अध्ययन में पांच भारतीय मिलेट्स से एचसीए बाउंड एराबिनोजाइलान्स के वियोजन हेतु माइल्ड अल्काली एक्स्ट्रेक्शन का मानकीकरण प्रोटेकोल किया है, 0.5: केओ एच एक्स्ट्रेक्शन फिनोलिक अम्लों के डी—इस्ट्रीफिकेशन बचाने से निष्पादित किया गया था। एक्स्ट्रेक्टेड सामग्री के कुल फिनोलिक्स कटेंट को फोलिन की विधि उपयोग से क्लोरोमेटिकली निर्धारण किया गया था। केएम तथा एफओएक्सएम एक्सट्रेक्ट ~18% तथा 5% क्रमशः के कुल फिनोलिक्स कटेंट का विश्लेषण प्रदर्शित करता है, जबिक अन्य मिलेट एक्सट्रेक्टस (एफएम, बीएम तथा पीएम) ~8-9% के फिनोलिक्स कटेंट प्रदर्शित करते हैं।

एक्सट्रेक्टेड सामग्रियों का भार्गर कम्पोजिशनल विश्लेषण एल्डीटोल एसीटेट डेरिवेटिव्स के रूप में जीसी तथा जीसी—एमएस उपयोग से प्राप्त हुआ था। विश्लेषण ग्लुकोज, ग्लक्टोस व मानोस माइनर कंस्टीट्युएंट्स के रूप के साथ सभी एक्ट्रेक्ड सामग्री में एराबिनोस तथा जाइलोस जैसे मेजर कन्स्टीट्युएंट्स (~60&70%) की उपस्थिति प्रदर्शित करता है (चित्र 6)।

बाउंड फिनोलिक अम्लों का अनुमान एचपीएलसी विश्लेषणों द्वारा अनुसरण तथा भाद्धिकरण, एक्सट्रक्टेड एचसीए बाउंड एएक्स के डी-इस्ट्रीफिकेशन द्वारा निष्पादित किया गया था। एचपीएलसी विश्लेषण माइनर कन्स्टीटयुएंटस (संबंधित प्रतिशतता 3 तथा 8% क्रमशः) के रूप में कैफेइक तथा पैरा कौमरिक अम्ल के साथ एफएम एक्सट्रेक्ट (संबंधित प्रतिशत 89%) में मेजर कन्स्टीट्यूएंट फिनोलिक के रूप में फेरूलिक अम्ल की उपस्थिति प्रदर्शित करता है, जबकि केएम एक्सट्रेक्ट सभी तीन फिनोलिक अम्ल अर्थात कैंफेक, पैरा-कौमरिक एवं फेरूलिक अम्ल विचारणीय मात्रा (संबंधित प्रतिशत 30%, 33% तथा 37% क्रमशः) में उपस्थित था दोनों बीएम तथा एफओएक्सएम एक्सट्रेक्टस केवल पैरा-कौमेरिक (80%) तथा फेरूलिक अम्ल (20%) से युक्त है, जबिक पीएम एक्सट्रेक्ट 56% तथा 44% क्रमश की संबंधित प्रतिशत में पैरा कौमरिक तथा फेरूलिक अम्ल से युक्त है (चित्र 7)।


साधारणतः फिंगर मिलेट, फोक्सटेल मिलेट, कोडो मिलेट, बर्नयार्ड मिलेट, प्रोसो मिलेट तथा इसके एंटीऑक्सीडेंट एक्टीविटी से एचसीए बाउंड एटाबिनोजाइलान्स की उन्नत संरचना की भूकि। इन-विट्रो एस्से (डी) पीपीएच एस्से) उपयोग से मुल्यांकित किए गए थे। कोडो मिलेट एक्सट्रेक्ट 100 युजी / एमएल के न्यूनतम संकेन्द्रण पर 94% (+ 0.06) उच्चतम एंटीऑक्सीडेंट एक्टीविटी प्रदर्शित करते हैं. जबकि फिगर मिलेट एक्सटेक्ट 400युजी / एमएल के संकेन्द्रण पर 93% (+ 0.05) की एंटीऑक्सीडेंट एक्टीविटी प्रदर्शित करता है। प्रोसो तथा बर्नयार्ड मिलेट एक्सट्रेक्ट 600 युजी / एमएल क्रमशः के सकेन्द्रण पर 69% (+ 0.11) तथा 63% (+ 0.06) की मोड्रेट एंटीऑक्सीडेंट एक्टीविटी प्रदर्शित करता है जबकि फोक्सटेल मिलेट एक्सट्रेक्ट 700 युजी / एमएल के संकेन्द्रण पर 37

चित्र—6: कोडो मिलेट से एक्सट्रेक्टेड एचसीए बाउंड एराबिनोजाइलांस का जीसी स्पेक्ट्रम। (एटाः एराबिनोस, एसववाईएलः जाइलोस, इनोसः इनोसिटोल (आंतरिक मानक), मानः मानोस, गैलः गैलक्टोज, जीएलसीः ग्लुकोज)।

(+0.12) की लोअर एन्टीऑक्सीडेंट एक्टीविटी प्रदर्शित करता है। यद्यपि कुल फिनोलिक्स अनुमानित डाटा अंकित करता है कि एमएम, बीएम तथा पीएम एक्सट्रेक्ट के कुल फिनोलिक्स कंटेट ् 8. 9: की रेंज में थे, परन्तु एंटीऑक्सीडेंट क्षमता में महत्वपूर्ण परिवर्तन एफएम, बीएम तथा पीएम एक्सट्रेक्ट्स में से अवलोकित किए गए थे, जो एंटीऑक्सीडेंट एक्टीविटी में परिवर्तित बाउंड एचसीए तथा एराबिनोजाइलान्स के कम्पोजिशनल एवं संरचनात्मक परिवर्तनशीलता के साथ संबंधित है।

प्रक्रिया एचसीए बाउंड एराबिनोजाइलान्स पॉली का गहन संचनात्मक विश्लेषण प्रगति पर है तथा

चित्र—7: फिगर (ए) तथा कोडो मिलेट (बी) में बाउंड हाइड्रोक्सी—सिनामिक अम्लों की एचपीएलसी प्रोफाइल (सीए: कैफेइक अम्ल, पी—सीओए: पी—कौमरिक अम्ल, एफए: फेरुलिक अम्ल) फिनोलिक अम्ल बाउंड एएक्स जनरेट ऑलिगोसक्राइड्स से इंडो—जाइलान्स के साथ एनजाइमेटिकल भी थे, ओलिगोसक्राइड्स एमएएलडीआई— टीओएफ एमएस द्वारा विश्लेषित किए गए, फिंगर मिलेट एम/जैंड 985 पर पी4एफए2एसी, एम/जैंड 1051 पर पी6एपफएएसी) में फेरुलिक अम्ल से ऑलिगोसक्राइंड्स तथा बर्नयार्ड मिलेट (एम/ जैंड 837 पर पी4पी—सीओएएसी2), एम/जैंड 1013 पर पी4पी. सीओएएफएएएसी2) में फेरुलिक अम्ल के साथ पैरा— कौमरिक अम्ल की उपस्थिति एराबिनोजाइलान्स (पी: पेंटोस, पी—सीओए: पी—कौमरिक अम्ल, फेरुलिक अम्ल, एसी: एसीटाइल ग्रुप)।

ओलिगोसक्राइड विभिन्न विश्लेषण विधियों (जीसी-एमएस, एचपीएलसी, एमएएलडीआई-टीओएपफ-एमएस, ईएसआई-एमएस/एमएस तथा एनएमआर) के उपयोग से प्राप्त किया जाएगा। भविष्य में इनके रोल रेगुलेटिंग ऑक्सिडेटिव स्ट्रेस का विभिन्न इन-विट्रो एस्सेज अर्थात कोमेंट एस्सेज (एससीजीई) तथ एचईपीजी-2 सैल लाइन्स का आगामी विस्तार होगा।

प्रमुख उपलब्धियां

- प्रीलिमिनरी स्ट्रक्चरल तथा इन—विट्रो अध्ययन विभिन्न मिलेट किस्मों से एचसीए बाउंड एएक्स के एंटीऑक्सीडेंट पोटेंशियल एवं रचना में विचारणीय भिन्नताएं प्रदर्शित करती है।
- एचसीए बाउंड एराबिनोलाइलान्स पॉली तथा ऑलिसक्राइडस के विस्तृत स्ट्रक्चरल विशेषीकरण तथा इन—विट्रो अध्ययन एंटीऑक्सीडेंट एक्टीविटी से संबंध के साथ स्थापित उनके रचना—फंक्शन संबंध से विभिन्न फाइसिको—केमिकल विधियों (जीसी—एमएस, एचपीएलसी, एमएएलडीआई—टीओएफ— एमएस, ईएसआई—एमएस/एमएस तथा एनएमआर) उपयोग से प्रगति में है।

भावी परिप्रेक्ष्य

- एचसीए बाउंड एराबिनोजाइलान पॉली तथा ओलिगोसक्राइडस तथा उनके एंटीऑक्सीडेंट पोटेंशियल के उत्कृष्ट परिवर्तनों के मध्य में संबंधों को समझना।
- 2. विभिन्न जीवनशैली बिमारियों के विरूद्ध फ्री रेडिकल स्कवेंजिंग तथा इम्यूनो—इनहॉसिंग एडिटिव्स के साथ फंक्शनल खाद्यों एवं न्यूट्रासीयूटिकल्स का विकास करना।

4.2 आयरन एल्जिनेट इनकैपसूलेटिड फेरिक सैक्रेरेट माइक्रोइम्यूसलिनस सिथेसिस, लक्षण वर्णन एवं मूल्यांकन

प्रमुख अन्वेषक नितिन कुमार सिंघल

सह—अन्वेषक हरिओम यादव रजत संधीर

अनुसंधान अध्येता किम्मी मुखीजा

भूमिका

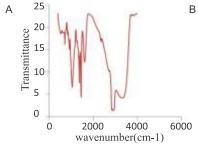
आयरन भारीर में एक अत्यावश्यक खनिज है, जो कई भाारीरिक कार्यों में आवेष्ठित होता है परंत् हीमोग्लोबिन के निर्माण में मुख्यतः आवश्यकता होती है। आयरन की अधिकता लिवर, स्प्लिन तथा बोनमैरो में फेरिटिन के रूप में भंडारित होती है। रक्त स्ट्रीम में, यह एक निर्दिष्ट वाहक प्रोटिन ट्रांसफेरिन से बाउंड है। वद्धि अवस्था के दौरान अपर्याप्त आयरन उपलब्धता अथवा आयनन की कमी में वांछित परिणाम वृद्धि की दशा है। आयरन की कमी विश्व में अनिमिया का अत्यन्त सामान्य कारण है तथा विकसित देशों में अत्यंत प्रचलित पोषणिक एनिमिया से अनवरत है। आयरन की कीमत अनिमिया असमान्य छोटे (माइक्रोटिक) आरबीसी'ज में परिणामित, हीमोग्लोबिन सिंथेसिस में एक त्रुटी द्वारा लक्षण वर्णित है, जो हीमोग्लोबिन की कम हुई मात्रा से युक्त होता है।

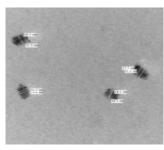
ओर्गेनोलेप्टिक अपारेंट कितनाईयों को कम करने तथा जैव उपलब्धता वृद्धि से एक अप्रोच आयरन इनटेस्टाइन पहुंच से पूर्व पर्यावरण के साथ प्रभावों से आयन रोक सकता है। आयरन साल्ट बहुत प्रतिक्रियाशील है, इसलिए यह सुरक्षा खाद्य मेट्रिक्स एवं साइड इफेक्ट को कम करके ऑक्सीडेशन को दूर कर सकता है, जब किलेबंदी उत्पाद खाए जाते हैं। एल्जीनेट के साथ इनकेप्सूलेटिंग फेरिक सैक्रेट उच्च पौषणिक लागत नहीं है, केवल ह्वासवान् ओर्गेनोलेप्टिक कितनाई है परन्तु आयरन जैव—उपलब्धता में वृद्धि करती है। एल्जीनेट बायो—एडहेसिव जैसे कि पॉलिकेशन सामर्थ्य इंटेसिटनल मैम्ब्रेन के माध्यम से पैरा सेल्यूलर विलयन को बढ़ा सकता है। उच्च विलियन क्षमता तथा छोटी ओर्गेनोलेप्टिक कितनाईयों के साथ फेरिक सैक्रेट कम्प्लेक्सिज एल्जीनेट के साथ इनकेप्यसूलेटिड तथा कोर के रूप में चयनित की गई है।

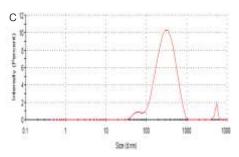
उद्देश्य

- 1. सिंथेसाइज एवं करेक्राईज एल्जीनेट इनके प्सूलेटिड फेरिक सक्राइड माइक्रोइमूलसिअंस करना।
- 2. सीएसीओ—2 सैल लाइंस के उपयोग से एल्जीनेट इनकेप्सूलेटिड फेरिक सक्राइड इम्यूलसिअंस में आयरन की जैव उपलब्धता की तुलना एवं मूल्यांकन करना।
- 3. एनेमिक पशुओं में ऑक्सीडेटिव स्ट्रेस तथा आयरन जैव—उपलब्धता पर एल्जीनेट इनकें प्सूले टिड फेरिक ग्लेक्टो स माइक्रोइयमूसिअन (एएफजीएम) के प्रभाव की तुलना करना।

अनुसधान प्रगति

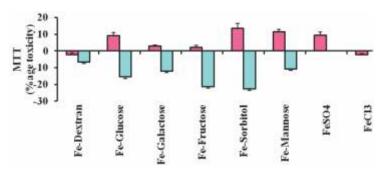

इमूलसिअंस का सिंथेसिस एवं विशेषीकरणः संक्षेप में, मोनोसक्राइड (टी-ग्लुकोज, डी-सोर्बिटोल, डी-फरूक्टोस, डी-मैनोस तथा डी-गैंलेक्टोस) को मेंथनोल में बन्द किया गया था तथा सोडियम मेटल क्रियाशीलता के साथ छोटे टुकड़ों में मिलाया गया था, इसके पश्चात एनहाइड्रोस आयरन (III) क्लोराड का मेथनोलिक सोल्यूशन को प्रस्तुत अवक्षेप में मिलाया गया था, एक सोलिड प्रोडक्ट फिल्टरिंग द्वारा प्राप्त हुआ था, जो मेथानोल एवं एसीटोन, ड्राइंड अंडर वैक्यूम द्वारा भाद्ध किया गया था। यह प्रतिक्रिया फेरिक सक्रेट कम्प्लेक्सिजः फेरिक ग्लुकोज, फेरिक-सोर्बिटोल, फेरिक-फरूक्टोस, फेरिक-मानोस तथा फेरिक ग्लेक्टोस क्रमशः के निर्माण में परिणामित है। कम्प्लेक्सिज में आयन की उपलब्धता का प्रतिशत इंडक्टीवली कौपल्ड प्लाज्मा मास स्पेक्ट्रोफोटोमीटर



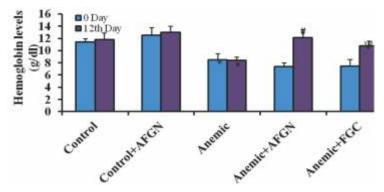

(आईसीपी-एमएस) द्वारा निर्धारित किया गया। सभी फेरिक सक्रेट कम्प्लेक्सिज एफटीआईआर द्वारा लक्षण वर्णित किए गए हैं। विक्षेपण (उपयुक्त अवमिश्रण के साथ) में सभी माइक्रोइक्युलसिअंस के जेटा पोटेंशियल एवं मीन डायमीटर लेजर विवर्तन तकनीक (मास्टरसाइजर 2000, मालर्व उपकरणों के उपयोग से निर्धारित की गई है. टीईएम के उपयोग से विश्लेषित माइक्रोस्कोपिकली द्वारा युके अनुसरण की गई है। कम्प्लेक्सिज का एफटीआईअर-स्पेक्ट्रा जनक लिगांडस के सोलिड स्टेट में एक्सटेंसिव इंटरमोलिक्यूलर हाइड्रोजन मौजुदाा बाउंडस के निर्देशक है, इसलिए ब्रोड बैंड 3390+ 10 सेमी विश्लेषण प्रदर्शित करता है कि अधिकतम पार्टिकल्स स्फेरिकल भोप्ड के समीप थी तथा व्यक्तिगत युनिफोर्म इनाइटटिज के रूप में मौजूद थी, बल्कि उनकी एगलोमिरेट्स उसकी स्थिरता को अकित करता है। औसत पार्टिकल साईज माइक्रोइम्यलसिअंस को लेजर विवर्तन द्वारा 800-1000 एनएम की रेंज में मापा गया था तथा सभी आयरन मानोस्क्राइड इम्युलसिअंस के जेटा पोटेंशियल-20 से-34 एमवी की रेंज में थे, माइक्रो इम्यूलसिंअस की स्थिरता की पृष्टि की गई है। सभी लक्षण वर्णन चित्र 8 में एएफजीएम के लिए संक्षिप्त प्रस्तुत है।

2. इन विट्रो परिणामः सैल्स मे कम्प्लेक्सिज के साथ आयरन की जैव उपलब्धाता माइक्रोइम्यूलसिअंस से तुलनात्मक रूप में उच्च महत्वपूर्ण थी, क्योंकि कम्पलेक्सिज में आयरन उपलब्धता अनकोटेड रूप में था तथा सैल्स से सीधी उपलब्धता है। एमटीटी एस्से लिविंग सैल्स वाय मिटोकोनड्राइल डिहाईड्रोजेनसिस की मापन एक्टीविटी के लिए मींट था। विभिन्न आयरन कम्पाउंडस द्वार प्रदर्शित विषाक्तता चित्र 9 में प्रदर्शित की गई है। फेरिक सक्रेट कम्प्लेक्सिज की विषाक्तता एएफजीएम से तुलनात्मक रूप में अधिक पाई गई थी। तथापि वाणिज्यक उपलब्ध उत्पादों में से, आयरन डेक्सट्रान तथा एफईसी 13 अल्प विषाक्तता प्रदर्शित करता है, जबिक एफईएसओ4 सभी एल्जीनेट इनकेप्सूलेटिड फेरिक सैक्रेट माइक्रोइम्यूलासिअंस के विरुद्ध उच्चतम विषाक्तता प्रदर्शित करता है।

- इन विवो परिणामः हेम परिपूर्णता अध्ययन एवं आरबीसी काउंट का परिणाम चित्र 3 में प्रदर्शित किया गया है। आयरन डेफिसिएंट पशओं का हीमाग्लोबिन कंट्रोल पशुओं से तुलना में 26ण्4ः द्वारा घटता हुआ पाया गया था। 63ण्5ः द्वारा एनेमिक पशुओं का हीमोग्लोबिन एएफजीएम ट्रीटमेंट में वृद्धि हुई, यद्यपि एफजीसी ट्रीटेड पशुओं में 33ण्44: द्वारा वृद्धि हुई थी जबकि भारीर में इनकेप्सूलेटिड आयरन की बेहतर जैव-उपलब्धता को सूचित करता है। चित्र:10 एनेमिक पशुओं के हीमाग्लेबिन लेवलों पर एएफजीएन तथा एफजीसी ट्रीटमेंट का प्रभाव। वैल्यू निम्नानुसार अभिव्यक्त हैः मीन+ एसडी; एन =5,* कंट्रोल से एनेमिक महत्वपूर्ण भिन्नता, रु एनेमिक से एनेमिक + एएफजीएन महत्वपूर्ण भिन्नता तथा एनेमिक से 🗤 एनेमिक+ एफजीसी महत्वपूर्ण भिन्नता */#/ψ (पी<0.05)।
- 4. हिस्ट्रोपैथोलोजिक अध्ययन लिवर में, कंट्रोल

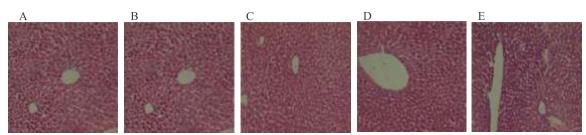


चित्र—8: एल्जिनेट इनकेप्सूलेटिड फेरिक ग्लुकोज नैनोइम्यूलसिअन (एएफजीएम) का लक्षण वर्णन (ए) एफटीआईआर स्पेक्ट्राः (बी) टीईएम, (सी) पार्टिकल साइज डिस्ट्रीब्यूशन।



चित्र—9: सैल व्यवहार्यता पर एल्जिनेट इनकैप्सूलेटिड फेरिक माइक्रोइम्यूसिअंस तथा फेरिक सक्रेट कम्प्लेक्सिज का प्रभाव।

पशु सैल्स अराउंड संंट्रल वेन के सामान्य वितण के साथ सामान्य मोफोलॉजी को प्रदर्शित करता है। लिवर से मन्द क्षित में परिणामित एनिमिया विशिष्ट न्यूक्लई के साथ जलित सैल्स है। एएफजीएम ट्रीटेड पशु सामान्य लिवर मोफॉलॉजी प्रदर्शित करते हैं जबिक मैक्रोफेजिस के उच्च इनिफल्ट्रेशन में परिणामित लिवर से एपफजीसी ट्रीटमेंट से उत्पन्न बहुत उच्च क्षित तथा सेंट्रल वेन में से सैल रेडिएट्स के बेसिक आर्किटैक्ट प्लान पूर्णतः नष्ट किए गए हैं (चित्र 11)।


 क्यूआरटी पीसीआर अभिव्यक्ति विश्लेषणः हमार जीन अभिव्यक्ति डाटा प्रदर्शित करता है कि एएफजीएम कैरिंग आयरन मोलिक्यूल्स भारीर में आयरन प्रेषित करता है, जो बिना परिणाम स्पष्ट रूप से अंकित करता है कि तैयार माइक्रोइम्युलसिअंस उच्च इनकैप्सुलेशन एफिसिएंसी के साथ स्थाई, भोप, साइज में पर्याप्त थी। यह माइक्रोइम्यूलसिअंस काको-2 सैल लाइन में बिना किसी विषेले प्रभावों के बेहतर अवशोषित पाए गए थे। इसलिए, सुझाव प्रदान किया जा सकता है माइक्रोइम्युलसिअंस कम्प्लेक्स रूप से आयरन से तूलना में आयरन जैव-उपलब्धता वृद्धि में अधिक प्रभावकारी है। यह प्रकट है कि आयरन हीमोग्लोबिन निर्माण में आवश्यकता होता है. जो आबीसी काउंट में अल्ट्रेशन हेतु जिम्मेवार है। वर्तमान अध्ययन का परिणाम प्रदर्शित करता है कि माइक्रोइम्यूलसिअन के रूप में आयरन पूरकीकरण अधिक जैव उपलब्धता है तथा आयरन सैक्रेट कम्प्लेक्सिज से तुलनात्मक

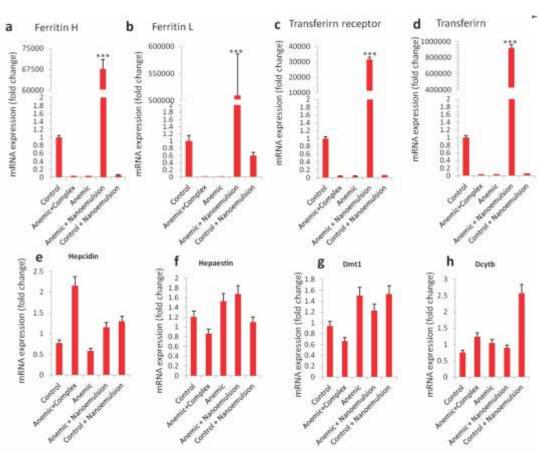
चित्र—10: 20 X पर लिवर की एच एवं ई स्टेनिंगः कंट्रोल, कंट्रोल + एफजीएन, एनेमिक, एनेमिक एएफजीएन एवं एनेमिक + एपफजीसी।

किसी प्रतिकूल प्रभावों के आयरन भंडारण सैल्स में आयरन रेगुलेटरी जीनों की उन्नत जीन अभिव्यक्ति प्रोफाइल के साथ चित्र 12 में प्रतिबिम्बित है। रूप में आयरन हीनता एनिमिया के साथ संबंधित एटेन्युटिंग अल्ट्रेशंस में प्रभावकारी है।

राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान

चित्र—11: माइस के लिवर टिशूज में आयरन होम्योस्टासिस जीनों के जीन अभिव्यक्ति पर नैनो—इम्लिसयन ट्रीटमेंट का प्रभाव। वैल्यूज एसईएम के साथ एर्र बार्स एवं ट्रिप्लीकेट विश्लेषण की वैल्यूस के अर्थ को प्रदर्शित करता है।

प्रमुख उपलब्धियां


हमारा अध्ययन सुझाव प्रदान करता है कि एल्जिनेट माइक्रोइम्यूलिसएंस के रूप में आयरन पूरकीकरण अधिक जैव—उपलब्धता है तथा आयरन हीनता एनिमिया के साथ संबंधित एटेन्यूटिंग अल्ट्रेशंस में प्रभावकारी है।

भावी परिप्रेक्ष्य

1. फेक्टर्स इनफ्ल्यूसिंग आयरन होम्योस्टासिस अध्ययन को समझने के लिए अध्ययन किया जाएगा।

- 2. नैनोपार्टिकल्स उपयोग के लक्ष्यों हेतु जिम्मेवार जीनों की पहचान की जाएगी।
- 4.3 आयन होम्योस्टासिस नियमन से आहारीय संघटकों की जांच और आयरन की कमी के विरूद्ध उनका उपयोग

प्रमुख अन्वेषक हरिओम यादव

चित्र—12 : माइस के लिवर टिशूज में आयरन होम्योस्टासिस जीनों के जीन अभिव्यक्ति पर नैनो—इम्लिसयन ट्रीटमेंट का प्रभाव। वैल्यूज एसईएम के साथ एर्र बार्स एवं ट्रिप्लीकेट विश्लेषण की वैल्यूस के अर्थ को प्रदर्शित करता है।

अनुसधान अध्येता

स्टैनजिन एंगमो भौले सरदूल सिंह

भूमिका

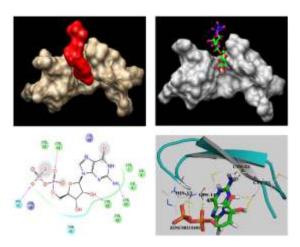
भारत विश्व के उन देशों में से एक है, जहां खून की कमी की व्याप्ति बहुत अधिक है। भारत की लगभग 58 प्रतिशत महिलाएं खून की कमी से ग्रस्त हैं और अनुमान तो यह भी है कि खून की कमी ही भारत में 20 से 40 प्रतिशत तक मेटरनल मृत्यु का कारण बनती है। दक्षिण एशिया में रक्त-अल्पता के कारण मैटरनल मृत्यू में भारत की भागीदारी करीब 80 प्रतिशत है। भारत में पोषकीय रक्त अल्यता एक बडी जन—स्वास्थ्य समस्या है, जो प्राथमिक तौर पर आयन की कीमत के कारण है। राष्ट्रीय परिवार स्वास्थ्य सर्वे—3 (एनएफएचएस—3) डाटा सुझाव प्रदान करता है कि एनिमिया वृहत रूप में कमजोर वर्ग–गर्भवती महिलाओं में 58 प्रतिशत , 50 प्रशित नॉन-प्रैगनेंट नॉन लेक्टेटिंग महिलाओं. 56 प्रतिशत किशोर लडिकयों (15–19 वर्ष), 30 प्रतिशत किशोर लडकी में तथा 80 प्रतिशत 3 वर्षों से कम आयू के बच्चों में विशेष तौर पर होता है।

आयरन की कमी की बढ़ी हुई व्याप्ति का कारण भारतीय आबादी में आयरन की कमी से लड़ने के लिए पर्याप्त रणनीतियों की अनुपलब्धता है और भारतीयों में आयरन होम्योस्टेसिस की पैथोफिजियोलॉजी के बारे में पूर्ण ज्ञान की कमी है। भारत की अधिकांश आबादी भााकाहार पर निर्भर है। हालांकि, आयरन भााकाहार (गैर—सिष) में मौजूद रहता है और कम जैव उपलब्धता है, इसलिए भारतीय खाद्य में वांछिज जैव उपलब्धता आयरन संघटक नाबी में महत्वपूर्ण भावी भोध पहलूओं में से एक होगा। हम फसलों की किस्मों यानी गेहूं में आयरन जैव—उपलब्धता के सुधार के लिए प्लांट मोलिक्यूलर बायोलॉजी और जेनेटिक्स पर कार्य कर रहे विभिन्न वैज्ञानिकों के नजदीकी सहयोग के साथ अपने लक्ष्यों की ओर बढ़ेंगे।

इसी बीच, मानव भारीर में विभिन्न फीडबैक मैकेनिज्मस द्वारा उसके आयरन के अवशोषण का कसकर नियमन किया गया। पशुओं मे हैप्सिडिन आयरन अवशोषण का एक केन्द्रीय नियामक है और आयरन अवशोषण को रोकने के साथ-साथ आयरन भंडार कोष्ठों अर्थात इनटेस्टाइनल एपिथेलियल कोष्ठ, मैक्रफेजेज, हैपेटोसाइटस से (आरबीसी गठन के समय पर) आयरन की आवश्यकता होती है, जब उसे जारी कर देता है। हैप्सिडिन फैरोपोर्टिन (इंट्रासेलुलर आयरन छोड़ने के लिए एक आयरन वाहक) को आबद्ध करता है, जो कि हैप्सिडिन-फैरोपोर्टिन कांम्प्लेक्स की डिग्रेडेशन की ओर अग्रसर होता है। इसलिए हैप्सिडिन और फैरोपोर्टिन के बीच अंतर्व्यवहार रोकना आयरन की कमी से लंडने की रणनीतियां विकसित करने के लिए महत्वपूर्ण लक्ष्यों में से एक बन गया है। यहां हमारा समूह एमिलोरेट आयरन डेफिसिएंट एनिमिया से प्राकृतिक एवं / अथवा खाद्य व्यूत्पन्न जैव उपलब्धता यौगिकों के उपयोग से हेपसिडिन-फेरोपोर्टिन अंतर्व्यवहार रोकने के लिए रणनीतियां विकसित कर रहा है।

उद्देश्य

- भारत में विभिन्न जातीय जनसंख्या में हेप्सिडिन लेवलों का विश्लेषण करना तथा इसका आयरन की कमी की व्याप्कता के साथ सह—संबंध स्थापित करना।
- 2. उच्च आहारीय योगिकों का विकास करना जो हेप्सिडिन की अभिव्यक्ति प्रदर्शित कर सके तथा आयरन भोषण में सुधार एवं जारी करना।
- 3. उच्च प्राकृतिक यौगिकों की खोज एवं स्क्रीन करना, जो हेप्सिडिन तथा फेरोपोर्टिन के अंतर्व्यवहार को कम कर सके तथा आयरन की कमी के विरुद्ध लाभदायक प्रभाव प्रकट कर सके।


अनुसंघान प्रगति

रूचिकर, हमारा मेटा—एनालाइसिस अध्ययन इंगित करता है कि अन्य देशों की तुलना में भारतीय आबादी में नाटकीय रूप से संचरणीय हैप्सिडिन स्तर बढ़ जाता है। यह सुझाता है कि कम जैव—उपलब्धता आयरन की खपत के साथ ही यह लगता है कि वर्णित हैप्सिडिन लेवल्स के माध्यम से भारतीय आबादी में आयरन की अवशोषण में रूकावट भी एक कारण है।

इसीलिए हमने खाद्य में मौजूद नये प्राकृतिक सम्मिश्रणों की स्क्रीनिंग आरंभ कर दी है जो कि हैप्सिडिन एक्सप्रेशन को बाधित कर सके अथवा हैप्सिडिन के एक्शन को रोका जा सके (चित्र 13)। रूचिकर, हमें कई सम्मिश्रण मिले हैं, जो हैप्सिडिन टारगेट पर सशक्त प्रभाव दिखाते हैं। इसलिए विशेषतः हमारे समून ने वर्धित आयरन अवशोषण के लिए तीन रणनीतियों को लक्ष्य बनायागा—(1) भारतीय खाद्य में जैव—उपलब्धता आयरन में वृद्धि, (2) हैप्सिडिन एक्सप्रेशन में कमी और (3) प्राकृतिक सम्मिश्रणों का प्रयोग करते हुए हैप्सिडिन एक्शन को रोकना।

इस दिशा में मेरा आगामी लक्ष्य उच्च यौगिकी को स्थापित करना है, जो हैप्सिडिन एक्सप्रेशन व एक्शन को रोक सके और आयरन अवशोषण की वृद्धि के लिए भारतीय खाद्य में इन सिम्मश्रणों को समाहित

चित्र—13 : हैप्सिडिन के साथ चयनित मिश्रणों का अंतर्व्यवहार।

कर सके जो कि अंततः आयरन की कमी से लड़ने में सहायक होंगे।

प्रमख उपलब्धियां

 लगभग 70,000 प्राकृतिक सिम्मश्रण लाइब्रेरी हैप्सिडिन बाध्यता पोटेंशियल के लिए इन—सिलिको विधि के उपयोग द्वारा जांच की गई है तथा एक भीर्ष प्रत्याशी को आगामी इन—विट्रो तथा इन—विवो प्रयोगों के लिए चयन किया गया है। चयनित सम्मिश्रण को एमिलायोंरेट आयरन की कमी से आगे जांचा गया है तथा निषेध हैप्सिडिन एक्शन से स्थापित किया गया है।

भावी परिप्रेक्ष्य

 इन जांचों से प्राप्त हुए सिम्मश्रण आयरन की कमी के एमिलियोरेशन के ट्रांसलेट से पोटेंशियल हेतु अति महत्वपूर्ण होंगे

4.4 मोटापा एवं डायबिटिज के विरूद्ध प्रोबायोटिक थैरेपी की स्थापना

प्रमुख अन्वेषक हरिओम यादव

परियोजना सहायक

प्रियंका चोपड़ा

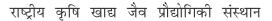
भूमिका

मोटापा एवं डायबिटिज में अधिक कैलोरी ग्रहण करने एवं कम ऊर्जा खपाने के साथ जुड़े हुए हैं तथा जो नेगेटिव एनर्जी संतुलन में परिणामित ऊर्जा खर्चों को कम करती है। कम्प्लेक्स मेटाबोलिक पैथोजेनसिस प्रभावकारी समाघात इन बिमारियों से अपर्याप्त उपचार रूपात्मकता प्रस्तुत करता है। डायबिटिज प्रभाव महामारी के समान फैल रहा है तथा वाल्यावस्था डायबिटिज एवं मोटापा एक चिन्ताजनक वृद्धि कर रहा है। इसलिए यह इन बिमारियों हेत् सुरक्षित विकास, सरल प्रेषणिय तथा इकोनोमिकली विजिबल से महत्वपूर्ण वैकल्पिक उपचार है। हमारा पिछला अध्ययन प्रोबायोटिक्स की कैंडिडेसी जैसे कि मोटापा एवं डायबिटिज के विरूद्ध थेरेपौटिक मॉडालिटी का समर्थक डाटा प्रदान करता है। प्रोबोयोटिक्स जीवित जीवाण है जो कालोनाइज गेस्ट्रोइनटेस्टिनल ट्रक्ट है तथा स्वास्थ्य लाभ प्रदान करता है। तथापि इसका मेडिकल थैरेपिस्ट के रूप में व्यापक निर्धारण एक्शन के इसके मैकेनिज्म के हमारे ज्ञान के अभाव के कारण मुख्यतः सीमित है। हमारा अभिनव अध्ययन प्रदर्शित करता है कि एक प्रोबायोटिक वीएसएल रु ३ का प्रशासन बाधा प्रदान कर सकता है तथा पृथक माउस मॉडल्स में मोटापा एवं डायबिटिज का उपचार किया जा सकता है।

वीएसएल रु3 गट फ्लोरा कम्पोजिशन के इंसूलिन रेसिस्टेंस वाय मॉड्यूलेशन तथा भारीर भार वृद्धि को रोक सकता है।

उद्देश्य

- एंटी—ओबेस / एंटी—डायबेटिक पोंटेंशियल के साथ नए खाद्य / मानव स्रोत प्रोबायोटिक स्ट्रेंस का वियोजन एवं लक्षण वर्णन करना।
- 2. प्रोबायोटिक एक्शनों के टारगेट जीनों की खोज करना तथा इनका गट—फ्लोरा मॉड्यूलेशन के साथ सह—संबंध स्थापित करना।
- वाल्यावस्था मोटापा के निवारण में प्रोबायोटिक्स की भूमिका तथा इसके एक्शन का मैकेनिज्म करना।
- भार वृद्धि अध्ययन में वीएसएल रु 3 का प्रि—क्लीनिकल एवं क्लीनिकल क्षमता।


अनुसंघान प्रगति

व्यापक तौर पर, हमारा पूर्व अध्ययन प्रदर्शित करता है कि प्रोबायोटिक्स (वीएसएल रु3) उपचार एंसूलिन सेंसिटिविटी तथा एडिपोजिटी की रेगुलेटिंग प्रक्रियाओं द्वारा ग्लुकोज होम्योस्टासिस के रखरखाव में एक वाइटल भूमिका अदा करता है। हमारा दीर्घाविध उद्देश्य निर्दिष्ट उद्देश्यों अनुसार निम्न वर्णित आऊटस्टेडिंग विषयों से संबंधित है।

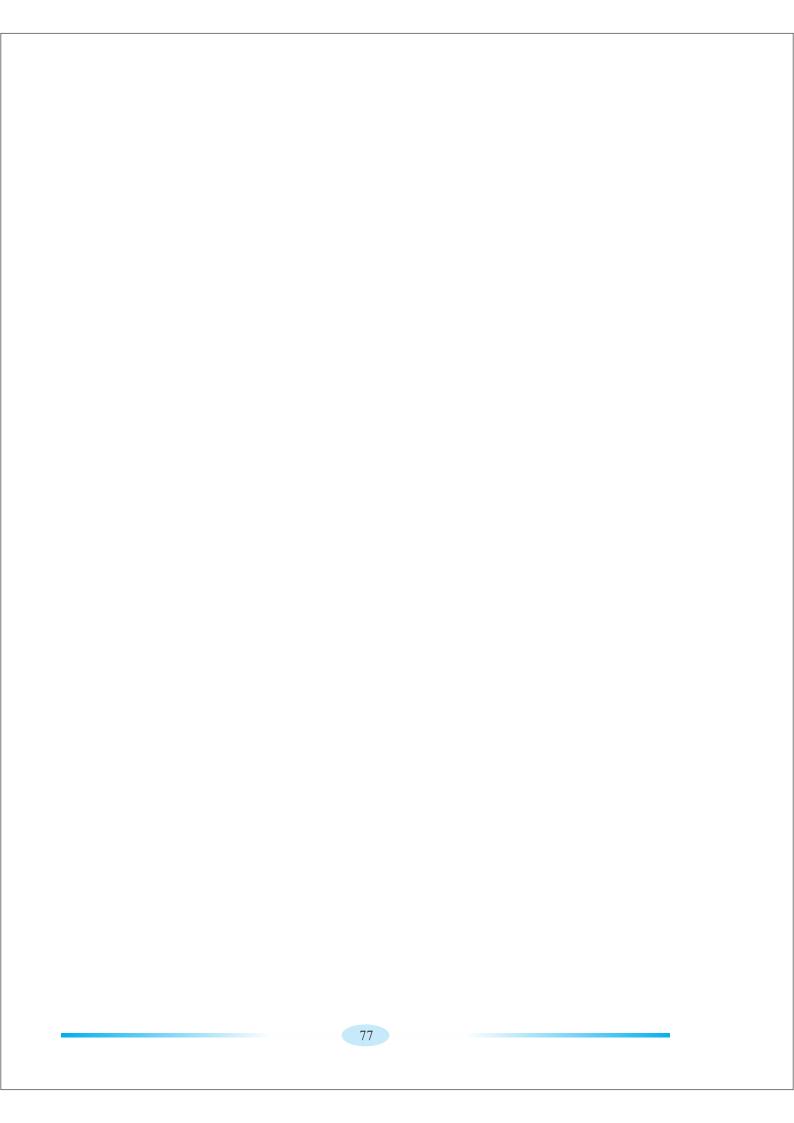
- 1. हम पृथक नए प्रोबायोटिक स्ट्रेंस तथा बेहतर प्रोबायोटि स्ट्रेंस के लिए अधि—अविध में मोटापा तथा इंसू लिन विरोधा के लिए थैरेपौटिक / निवारक पोटेंशियल के लिए स्थापित किया जाएगा। हम निर्धारण करेंगे कि कैसे नए चयनित प्रोबायोटिक्स स्ट्रेंस मोटापा / डायबिटिज के विकास को कम कर सकते हैं तथा सामान्य ग्लुकोस होम्योस्टासिस के रखरखाव में अभिनित महत्वपूर्ण भूमिका।
- हम आशा करते हैं कि लक्षित ऑगेंस का प्रोबायोटिक्स लक्षित एक सेट अर्थात गट ब्रेन एडिपोस टिश्यूज तथा इन टिश्यूज में जीन, जो फंक्शनली इंफ्ल्यूसेंस ग्लुकोज होम्योस्टासिस है। इस बिन्दू पर विवेचन, लक्षित जीनों की

- पहचान, गैर—नामित है तथा हम सामान्य एवं टिश्यू निर्दिष्ट प्रोबायोटिक्स लक्ष्यों का अनकवर करने का प्रयत्न करेंगे जो रेगुलेट ग्लुकोज तथा इसके गट फ्लोरा के प्रोबयोटिक्स मेडिएटिड मॉड्यूलेशन के साथ कोरिलेशन करना है।
- उ. हम भार घटना अध्ययन में प्रोबायोटिक्स के प्रि—क्लीनिकल तथा क्लीनिकल क्षमता का मूल्यांकन करेंगे, जो भार प्रबंधन रेजीमेंट में प्रोबायोटिक्स उपयोग से अद्वितीय अवसर प्रदान करेगा तथा मोटापा एवं डायबिटिज से लड़ने में सहायता करता है।

प्रोबायोटिक्स विभिन्न स्वास्थ्य लाभों के लिए जाना जाता है, यहां पर हमने मोटापा एवं डायबिटिज के सुधार में प्रोबायोटिक्स की नई भूमिका की खोज की है। हमने नृतन अध्ययन में पाया कि चयनित प्रोबायोटिक्स की फिडिंग अर्थात गट फ्लोरा का वीएसएल रु 3 सुधार मोटापा एवं डायबिटिज वाय मॉड्यूलेशन। रोचकता, हमने पहली बार मोटापा सुधार से प्रोबायोटिक्स के मैकनिज्म को रिपोर्ट किया। यहां पर हमने पाया कि गट फ्लोरा के परिवर्तित कम्पोजिशन के माध्यम से ओबेस माइस के गट में से बीएसएल रु 3 प्रोबायोटिक्स परिवर्तित मेटाबोलोमिक प्रोफाइल का प्रशासन था। विशेषतः भॉार्टचेन फैट्टी एसिड्स अर्थात बुटाइरेट को उनके कंट्रोल समूह में तुलनात्मक वीएसएल रु 3 फेड माइस में महत्ववपूर्ण वृद्धि हुई थी। रूचिकर, आन्त्र एल-सैल्स से बूटाईरेट स्टीमुलेटिड ग्लुकोजन-जैसे प्रोटीन—1 (जीएलपी—1) में वृद्धि तथा मोटापा एवं डायबिटिज सुधार से व्यापक मेटाबोलिक फंक्शन था। इस परिणाम के आधार पर, हमने लगभग 100 लेक्टोबेसिलि स्ट्रेंस को पृथक किया, जो बुटाईरेट को उत्पादित कर सकता है तथा जो मोटापा एवं डायबिटिज के विरूद्ध अभिकल्पक फंक्शनल खाद्यों के लिए भी उपयोग किया जा सकता है। आगे, इन चयनित लेक्टोबेसिलि आइसालेट्स के तथा हमने चयनित दो अच्छे प्रोबायोटिक्स तथा बुटाईरेट प्रोड्यूसर लेक्टाबैसिलि में से प्रोबायोटिक एट्टीब्यूट्स स्थापित किए हैं। इसके पश्चात 16 एसआरएनए अनुक्रम तथा लक्षण वर्णन किया गया। हमने विकसित फंक्शनल खद्यों अर्थात दही से इन

लेक्ट्रोबेसिलि स्ट्रेंस का उपयोग किया। भविष्य में हम मानव अध्ययन में माइस मॉडल में इन स्ट्रेंनों जैसे कि फंक्शनल खाद्यों के एंटी—डायबेटिक / ओबेस प्रभावों को स्थाापित करेंगे। विकसित इ स्ट्रेंस एवं फंक्शनल खद्यों को केवल वैकल्पिक रूप से प्रदान नहीं किया जाएगा तथा व्यक्तियों के बेहतर स्वास्थ्य प्रबंधन हेतु मोटापा एवं डायबेटिक के लिए अनुपूरक विकल्प होगी, परन्तु संस्थान (नाबी) तथा डीबीटी के लिए राजस्व उत्पन्न हेतु एक अनुपम मॉडल का भी विकास होगा।

प्रमुख उपलब्धियां


 हमारे अनुसंधान में हमने पहली बार स्थपित किया कि प्रोबायोटिक्स मोड्युलेटिड गट फ्लोरा

- मोटापा एवं डायबिटिज के सुधार के लिए महत्वपूर्ण भूमिका अभिनित करता है;
- 2. इस अध्ययन में हमने पाया कि प्रोबायोटिक मेडिएटिड गट फ्लोरा मोड्यूलेशन परिवर्तन गट हार्मोन एक्सिस जो एनर्जी मेटाबोलिज्म को रेगुलेट करता है तथा मोटापा एवं डायबिटिज को काम करने में योगदन करता है।

भावी परिप्रेक्ष्य

 नए प्रोबायोटिक स्ट्रेंस का विकास करना जो मो टापा कम करने में मो ड्यूलेट गट—फ्लोरा—मेटाबोलाइट—हार्मोन एक्सिस कर सके तथा डायबिटिज भारतीय मार्केट में उच्च ट्रांसलेटेबल पोटेंशियल होगी।

खाद्य फसल जिनोम में पोषण एवं प्रसंस्करण ट्रेट्स के लिए जीन डिस्कवरी तथा मार्केट के लिए परिकलनात्मक जैविकी पहुंच

5.1 खाद्य फसल जिनोम्स, ट्रांसक्रिप्टोम तथा लघु आरएनए आधारित नियमन के तुलनात्मक विश्लेषण एवं आंकड़े सृजित करने के लिए उन्नत परिकलन प्रक्रिया, आंकड़ों, उपस्करों एवं मार्गों का विकास

प्रमुख अन्वेषक

श्रीकांत सुभाष मंत्री जॉय के रॉय

परियोजना वैज्ञानिक

शैलेश शर्मा

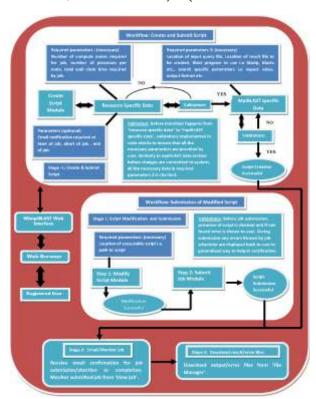
अनुसंधान अध्येता

अनूप किशोर सिंह शैरी भल्ला

एचपीसी आवेदन समर्थक सह—अभियंता

परिचित शर्मा, सीडीएसी पुणे

भूमिका


नए अनुक्रम जीन के फंक्शन ज्ञात प्रोटीनों के साथ साधारण अनुक्रम होमोलॉजी द्वारा खोजे जा सकते हैं। नेक्स्ट जनरेशन सिक्वेसिंग (एनजीएस) प्रौद्योगिकियों के लाभ के साथ, यह अध्ययन जीनों तथा जीनोम वाइड स्केल पर इसकी अभिव्यक्ति से अब संभव हो गई है। सभी जनों का फंक्शनल व्याख्या मल्टीपल डायबेसिज के विरूद्ध अनुक्रम समान रूप से सर्च द्वारा पूर्ण की गई है। इस प्रकार का जीनोम ट्रांसक्रिप्टोम व्याख्या कार्य परिकलनात्मक बहुत गहन है तथा पूर्ण परिणाम प्राप्त करने हेतू इन दिनों में कर लिया जाएगा। यद्यपि कई सामान्तर एमपीआई-इनेब्ल्ड बायो इनफॉर्मेटिक्स आवेदन सार्वजनिक क्षेत्र में उपलब्ध हैं, अनुसंधानकर्ता लिनक्स कमांड लाइन तथा संबंधित कार्यक्रम अनुभव में सुविज्ञता के अभाव के कारण उपयोग से अनिच्छुक है। इसकी सीमाओं के साथ, यह तीव्र व्याख्या के लिए सुपरकंप्यूटर्स उपयोग से बायोलोजिस्ट के लिए कठिन हो गया है। यह इन सीमाओं पर विजयी होने हेतु तथा अन्य नया बड़ा डाटा सुअवसरों के अन्वेषण हेत् नए टुल्स विकास की नितान्त आवश्यकता है।

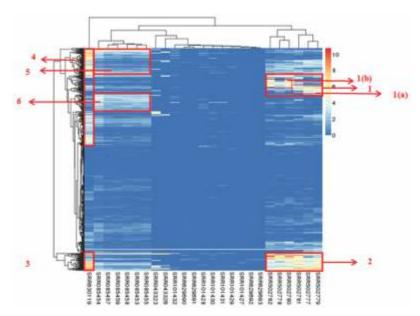
उद्देश्य

- तीव्र डाटा एवं खोज करने हेतु विकसित एल्गोरिथम्स, डाटाबेस, टूल्स एवं पाइपलाईन्स का विकास करना।
- 2. गैर व्याख्यित/भारक्रान्त प्रोटीनों की व्याख्या एवं मार्केट खोज हेतु सार्वजनिक उपलब्ध गेहूं जीनोम डाटा (जीनोम, ट्रांसक्रिप्टोम एवं इपिजीनोम तथा लघु आरएनए) के प्रचुर स्रोत का उपयोग करना।
- 3. इन—हाऊस ट्रांसक्रिप्टोम का विश्लेषण करना तथा इनका तुलनात्मक विश्लेषण करना।
- 4. सभी मेजर परियोजनाओं से बायोइनफॉर्मेटिक्स समर्थन उपलब्ध कराना।

अनुसंधान प्रगति

 हमने सामान्तर ब्लास्ट सर्चों हेतु डब्ल्यूआईएमपीआई ब्लास्ट, एक यूजर फ्रेंडली ओपन सोर्स वैब हंटरर्फेस का विकास किया है। यह जावा बैकबोन एवं इन स्टोप ओपन सोर्स

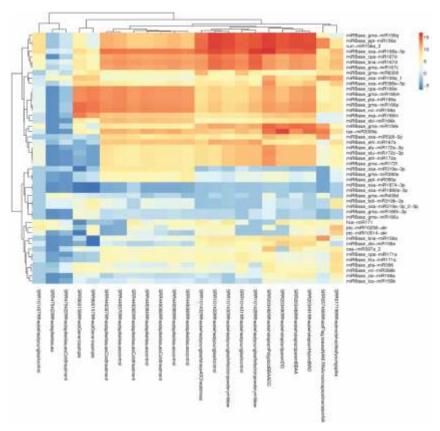
चित्र—1: डब्ल्यूआईएमपीआई ब्लास्ट में कार्य विधिक वर्कपलो एमपीआई ब्लास्ट जॉब के प्रवर्तन का प्रदर्शन, सक्सेसिव स्टेजों में से एंटरिंग से प्रीवेंट अवैध डाटा से स्टेजों के मध्य वैधीकरण किया गया है तथा प्रत्येक स्टेज पर इनपुट वाछित है।



अपाचे टीमकेट सरवर उपयोग से स्ट्रटस 1.3 में कार्यान्वित किया गया है। डब्ल्यूआईएमपीआई ब्लास्ट समर्थक आलेख रचना तथा जॉब प्रस्तुतीकरण फीचर्स तथा सिस्टम एडिमिनिस्ट्रेटर्स हेतु कड़ा जॉब प्रबंधन इंटरफेस भी प्रदान किया गया है। यह संयुक्त आलेख रचना, लिनक्स आधारित एचपीसी क्लस्टर पर टोर्क रिसोर्स मैनेजर के माध्यम से जॉब मॉनीटिरंग एवं प्रबंधन के साथ मॉडिफिकेशन फीचर्स है चित्र 1, डब्ल्यूआईएमपीआई ब्लास्ट वैब इंटरफेस एचपीसी आधारित लार्ज स्केल व्याख्या में बायोलोजिस्ट की सहायता करेगा।

प्रकाशित गेहूँ ट्रांसक्रिप्टोम्स क तुलनात्मक मेटा ट्रांसक्रिप्टोम विश्लेषण। मेटा अभिव्यक्ति का डाटाबेस मैट्रिक्स प्रकाशित गेहूं ट्रांसक्रिप्टोम उपयोग में विकसित किए गए हैं। उपयोग मामलाः ट्रांसक्रिप्शन फैक्टर्स एवं एन्जाइम्स हेतु डाटा माइनिंग क्लस्टर्ड एन्जाइम के अभिव्यक्ति

विनियमन पैटर्नों में सहायता करेगी तथा फोम्यूलेटिंग परिकल्पना में भी सहायता करेगी, जो विस्तृत विश्लेषण दोनों प्रायोगिक अथवा परिकलन द्वारा अनुसरण किए जा सकते हैं।


त्रधु आरएनए विनियमन अध्ययनः बीज विकास में परिपक्व एमआईआरएनए डिजीटल अभिव्यक्ति प्रोफाइलिंग का अध्ययन भी किया गया है। गेहूँ, चावल एवं मक्का से लघु आरएनए रीड्स क रॉ सिक्वेसिंग डाटा एसआरए डायबिस से एकत्रित किया गया है, जा एन सी ब आ इ, वे ब सा इ ट (http://www.ncbi.nlm.nih.gov./) पर उपलब्ध है। कमांडलाइन ब्लास्ट, पीईआरएल तथा भौल स्क्रिप्ट उपयोग से, ट्रांसक्रिप्टम प्रति मिलियन वैल्यूज डाटाबेस से सही मैच एमआईआरएनए हेतु परिकलन है। टिश्यू निर्दिष्ट एवं स्पेसिज निर्दिष्ट परिपक्व एमआईआरएनए की अभिव्यक्ति विजूलाइजेशन आर लैंग्वेज उपयोग

चित्र—2: अभिव्यक्ति हीटमैप क्षेत्र 1 तथा 2 बीज (एल्यूरोन तथा इंडोसपर्म) में एन्जाइम अभिव्यक्ति प्रदर्शित करता है। 1(ए) तथा 1(बी) एल्यूरोन (नमूने एसआरआर 502777, एसआआर 502779, एसआरआर 502781) तथा इंडोस्पर्म (एसआरआर 502778ए एसआरआर 502780ए एसआआर 502780) में एन्जाइम उच्च अभिव्यक्ति के सैट के मध्य अन्तर है। क्षेत्र 3 एवं 4 रूट्स में एन्जाइम्स अभिव्यक्त करता है। क्षेत्र 5 एवं 6 फ्लैग लीफ में एन्जाइम निर्दिष्ट प्रदर्शित करता है।

हीटमैप तथा पूर्ण किया गया है, जो चित्र 2 में प्रदर्शित है। आरएनए—एसईक्यू डाटा की स्थूल मात्रा का अनुसंधान पहचानित इच्छुक जीन से विकसित हीट मैप (चित्र 3) द्वारा पूर्ण की गई थी।

चित्र-3 : उच्च अभिव्यक्ति गेहूँ एमआईआरएनए की प्रकाशित एमआईआरएनए के साथ होमोलॉजी है।

प्रमुख उपलब्धियाँ

- डब्ल्यूआईएमपीआई ब्लास्टः उच्च प्रदर्शन परिकलन आधारित लार्ज स्केल व्याख्या में बायोलोजिस्ट की सहायता से एमपीआई ब्लास्ट हेतु एक वैब इंटरफेस का विकास किया है।
- 2. अभिव्यक्ति के मेटा—विश्लेषण हेतु सार्वजनिक उपलब्ध ट्रांसक्रिप्टोम्स के उपयोग से इंटेग्रेटिड ग्लोबल गेहूँ ट्रांसक्रिप्टोम डाटाबेस विकसित किया गया है।
- इन हाऊस ट्रांसक्रिप्टोम डाटा विश्लेषण तथा डाटाबेस का विकास किया गया है। गेहूँ, लीची तथा एनोना ट्रांसक्रिप्टोम हेतु सिक्वेंस—सर्वस इन—हाऊस डाटा माइनिंग हेतु विकसित एवं जारी किया गया है।
- लघु आरएनए विनियमन अध्ययनः बीज विकास में परिपक्व एमआईआरएनए डिजीटल अभिव्यक्ति प्रोफाइलिंग अध्ययन किया गया है।

भावी परिप्रेक्ष्य

1. डब्ल्यूआईएमपीआई ब्लास्ट फ्रेमवर्क पर पोर्टिंग

- मोट एमपीआई इनेबल्ड आवेदन। व्याख्या अर्थात एसेम्बली, पॉलिमोर्फिन डिटेक्शन की अपेक्षा अन्य विश्लेषण तथा डिजीटल अभिव्यक्ति एचपीसी उपयोग से त्वरित होगी।
- 2. इन—हाऊस ट्रांसक्रिप्टोम के व्यापक डाटाबेस का विकास तथा अन्य उच्च थ्रुपुट अध्ययन करना।

5.2 परिकल्पित प्रोटीनों की व्याख्या हेतु पाईपलाइन का विकास

प्रमुख अन्वेषक

श्रीकांत एस. मंत्री

सह-अन्वेषक

शैलेश शर्मा

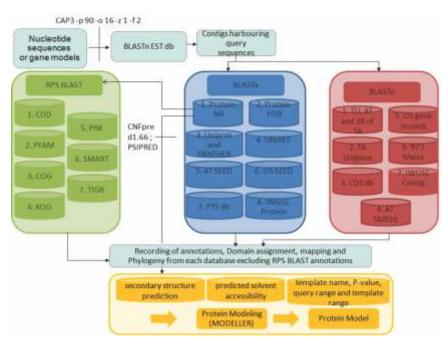
भूमिका

व्याख्या फीचर्स जैसे कि जीनों एवं ट्रांसक्रिप्शन फेक्टर वाइडिंग साइट्स की भविष्यवाणियों के साथ अलंकृत रॉ डीएनए अनुक्रमों की एक प्रक्रिया है। व्याख्याएँ महत्वपूर्ण जीन फंक्शन्स पहचानने तथा

इनेब्ल्ड तुलनात्मक विश्लेषणों हेतु आवश्यक होता है। क्या वर्तमान में वैब सरवर पर उपलब्ध है, जो उच्च मात्रा ऑटोमेटिड व्याख्या के लिए जीनोम्स की सार्वजनिक प्रस्तुतीकरण की अनुमति प्रदान करता है। तथापि, यहां पर विकसित ओपन सोर्स टूल्स के लिए फीवर विकल्प उपलब्ध है, जो उनके जीनोमिक लेबों पर अपने पर व्याख्या प्रारंभ करने तथा एकत्र अनुक्रमों से यूजर्स अनुमति है। डीआई— आईवाईओडब्ल्यूएए रॉ अनुक्रम डाटा उत्पादन के पश्चात संभव अनुसार हमारे अपने सरवरों पर रूचि की व्याख्यया जीनोक्स तथा असेम्बल्ड से हमारे समूह से वांछित से बाहर उदित "डू इट इन यूअर ऑन वे एसेम्बलर एंड एनोटेटर" है।

उद्देश्य

1. Triticum aestivum के लिए हाइथुपुट असेम्बली का विकास तथा निर्दिष्ट पाइपलाइन की व्याख्या करना।


अनुसंधान प्रगति

हमने डीआईआईवाईओडब्ल्यूएए किया है, जो हाई लेवल पाइथोन प्रोग्रामिंग लैंग्वेज तथा ब्लास्ट एक्स / एन प्रोग्राम उपयोग में लिखित है, सीएपी: थर्ड जनरेशन डीएनए असेम्बल प्रोग्राम, 22 विभिन्न बायोलॅजिकल डाटाबेसिज, जो कुछ होममेड है तथा कुछ सार्वजनिक उपलब्ध है, एक फाइल से बायोलॉजिकल पथवे हेतु 1 टेक्स्ट सर्च यूनिप्रोट आईडीएस तथा बायोलॉजिक पथवे है तथा सीएनएफपीआरईडी 1.66: एक सिंगल—टेम्पलेट प्रोटीन कॉन्टेक्स्ट—निर्दिष्ट सूचना तथा सशर्त न्यूरल क्षेत्रों के उपयोग से थ्रीडिंग पैकेज है। डीआई— आईवाईओडब्ल्यूएए पाईपलाइन की स्थापना एवं कन्फीग्रेशन लिनक्स/यूनिक्स के कुछ मूल ज्ञान आवश्यक है तथ यह कमांड लाईन पर निष्पादित कर सकता है। कई जिनोम्स क्लस्टर उयोग से बैच विधि में रनिंग द्वारा साथ—साथ व्ययाख्या की जा सकती है।

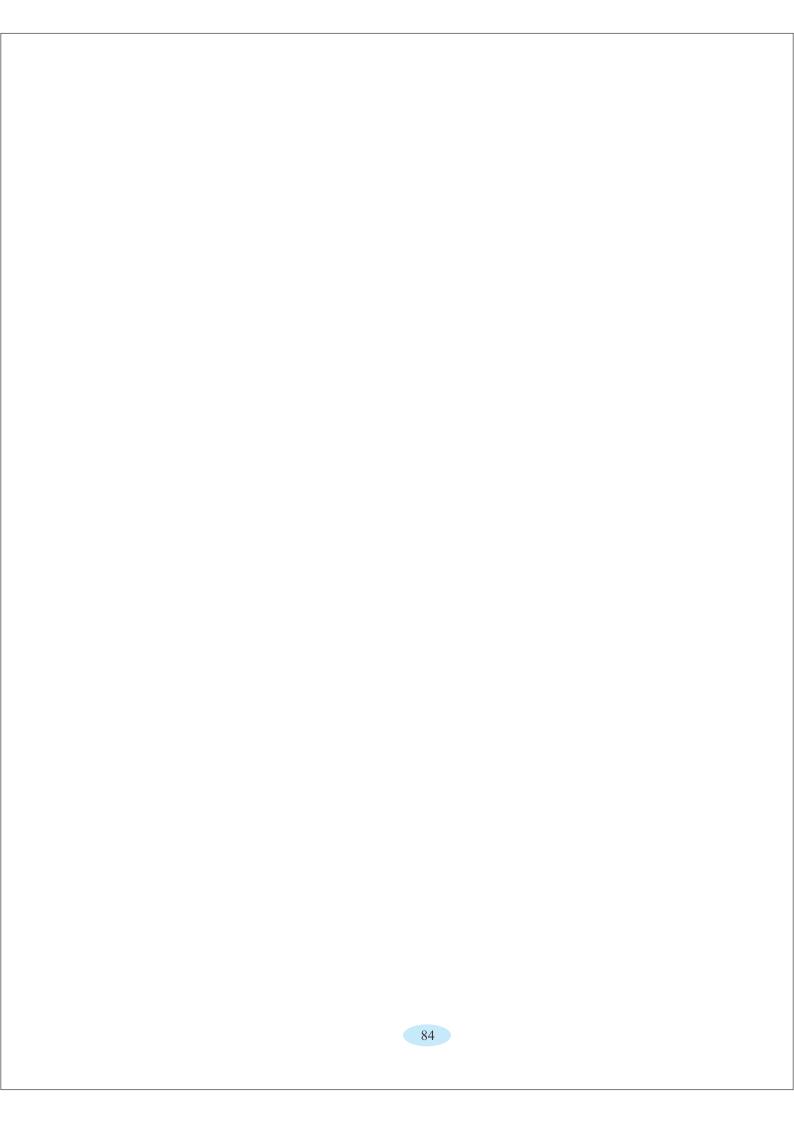
डीआईआईवाईओडब्ल्यूएए स्टेप्स का कम्पोज्ड है, जो निर्दिष्ट आदेश में निष्पादित है तथा प्रत्येक स्टेप एक बायोइनफोर्मेटिक एप्लीकेशन है, जो एनालाइज सिक्वें स एवं प्रोडक्ट आऊटपुट होगी। डीआईआईवाईओडब्ल्यूएए का पूर्ण एल्गोरिथम चित्र—4 में प्रदर्शित है।

प्रमुख उपलब्धियाँ

 हमने डीआईआईवाईओडब्ल्यूएए के साथ—साथ ट्रिटिकम एस्टीवम, ऑरयना सटिवा एवं अराबिडोप्सिस थालियाना क्रमशः के 40, 2619 तथा 212 इाइपोथिकल जीन मॉडलों की

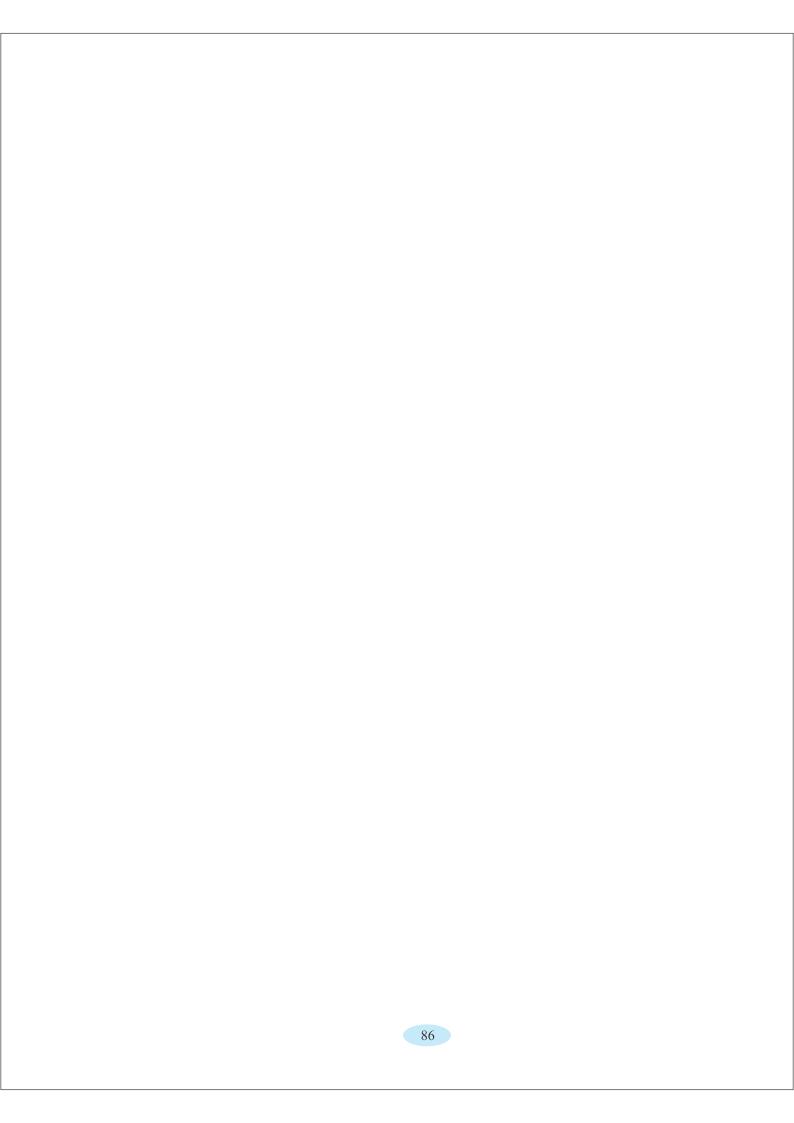
चित्र-4: डीआईआईआईओडब्ल्यूएए एल्गोरिथम का पिक्चरल रिप्रेजैंटेशन

राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान


व्याख्या की है।

- अतिरिक्त रूप में डीआईआईवाईओडब्ल्यूएए प्रोटीन नॉन रीडक्टेंट डाटाबेस के विरूद्ध प्रथम ब्लास्ट एक्स हीट प्रोटीन अनुक्रमों के द्वितीय एवं तृतीयक संरचना प्रदान करता है।
- 3. प्रोटीन अनुक्रम में डोमेन कंटेंट व्याख्यात्मक सूचना में युक्त है।

भावी परिप्रेक्ष्य


- 1. डीआईआईवाईओडब्ल्यूएए को नाबी के स्थल के माध्यम से अनुसंधान समुदाय हेतु प्रारंभ किया जाएगा।
- 2. हाई थ्रुपुट वे में अन्य खाद्य फसलों के जीनोम्स व्याख्या तथा अध्ययन हेतु डीआई— आईवाईओडब्ल्यूएए उपयोग किया जाएगा।

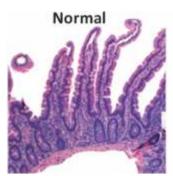
उभरते हुए क्षेत्र

 भारतीय गेहूँ क्लटीवर्स में सेलिक डिजीज इपिटोप्स की पहचान करना तथा आरएनआई एवं ब्रीडिंग अप्रोचिज द्वारा उनका मोड्युलेशन करना

अन्वेषक मोनिका गर्ग

भूमिका

सीडी बारले अथवा रे से गेहूँ अथवा होर्मालोगौस प्रोटीनों के ग्लुटन फ्रैक्शन से स्थाई इनटोरिंस द्वारा एक ही सैल मोडिएटिड ऑटोइम्यून एन्ट्रोपेथी कोज्ड है। पृथक जेजूना मकोसा (सबटोटल विलियस एट्रोभी) से इम्युन-मेडिएटिड डैमेज, डायरहोया, उल्टी, पेट दर्द, पेट फुलाव, बढ़ने में असफल, भार कम होना, मसल वेसटिंग तथा माल एबसोर्पसन मे लक्षणों को कम करता है। सीडी विश्व की जनसंख्या इसी प्रकार उत्तर भारतीय जनसंख्या में 0.3 तथा 2: के बीच में प्रचलित है। इस बिमारी हेतू केवल उपलब्ध उपचार कठोर लाइपफलोंग ग्लूटन फ्री आहार से संमर्थित है। स्ट्रीक्ट ग्लूटन फ्री आहार का अनुसरण करना बहुत अपेक्षित है, परन्तु ग्लुटन विभिन्न खाद्यों में सर्वव्यापक मिलते हैं। एक पहुंच जो ग्लुटन टोक्सिटी प्रोफाइल्स कम करने के साथ गेहूं की विभिन्न किरमों के विकास द्वारा जोखिमों को कम करने में सहायता कर सकता है। इस परियोजना के वर्क फ्रेम के भीतर हम कार्य करेंगे:


 गेहूं में सीडी इपिटोप्स (पेपटाईड वेरिएंट्स) की व्यापक मैपिंगः हम विभिन्न जीनोम्स पर नॉन इम्यूनोजेनिक तथा इम्यूनोजेनिक पेपटाईड वेरिएंट्स की पहचान करेंगे। ट्रांसक्रिप्टोमिक्स अध्ययन तथा डाटाबेस सर्च एवं एंटीबॉडी

- आधारित गेहूँ कल्टीर्व की जांच इम्यूजेनिक इपिटोप्स के नए वैरिएंट्स, उनके क्रोमोसोम लोकेशन तथा उनके साथ सम्बन्धित इम्यूनोजेनिसिटी के लेवल के बारे में बताएगा।
- 2. आरएनएआई तथा त्वरित प्रजनन पहुंचों द्वारा चयनित पेपटाइडस का निष्कासनः चयनित इम्यूनोजेनिक पेपटाईडस की साइलेसिंग आरएनएआई पहुंच के उपयोग से प्राप्त की जाएगी। निकषसन प्रजनन न्यूनतम सम्भावित समय में वन्य किस्मों तथा पुराने गेहूँ कल्टीवर्स से वांछित बेरिएंट्स के परिवर्तन में सहायता करेगा।
- 2. उच्च उत्पन्न होने वाली भारतीय गेहूं कल्टीवर्स से नीला एवं काला अनाज रंगों के जर्मप्लाज्म से एंथोसाइनिंस का हस्तांतरण एवं लक्षण वर्णन

अन्वेषक मोनिका गर्ग

भूमिका

लाल, बैगनी, नीला एवं सफेद रंग की भूसी के साथ गेहूं के रोचक जीनोटाइप्स के अस्तित्व कई वैज्ञानिक योगदानों में रिपोर्ट किए गए है। लाल एवं बैंगनी रंग द्विगुणित फलिमित्त परत मं कैटचिन—टेनिन एवं एंथो साइनिन्स (मुख्यतः साइनाइडिंग—3—ग्लाइकोसाइड) क्रमशः के कारण है। गेहूं अनाज का नीला रंग त्रिगुणित एल्यूरोन परत में एंथोसाइनिंस (मुख्यतः डेलिफिनीडिन—3—ग्लाइकोसाइड) के कारण है। प्लांट एंथोसाइनिंस तथा फाइटोकेमिकल्स एंटीऑक्सीडेंट के रूप में कार्य कर सकता है तथा

चित्र-1: विलि की ब्लंटिंग द्वारा लघु बोवेल की बायोपसी प्रदर्शक सेलिएक डिजीज मौनिफेस्टेड

एंटी—इंग्लेमेटी तथा एंटी—कैंसर एंटीजिंग गतिविधि प्रदर्शित करता है तथा कार्डियोवास्क्यूलर बिमारियों तथा टाइपर डायबिटिज को रोकता है। यह वेल्यू एडिड उत्पादों के विकास हेतु उच्च संघटक स्त्रोतों के रूप में काला, बैंगनी एवं नीले रंग की गेहूं उपयोग से संभावित है। रंगीन अनाजों की संभावना के आधार पर गेहूं के अनाज से फाइन—झाइड नूडल्स व काला गेहूं अनाज से सोया सौस, विनेजर, ब्रेकफास्ट सेरल एवं इंस्टेंट नूडल्स उत्पाद तथा बैंगनी गेहूं अनाज से एंथो बीयर बनाई गई तथा बैंगनी गेहूं भूसी चपाती के साथ इन गेहूंओं से पृथक फंक्शनल खाद्य विकसित किए गए हैं। परियोजना फ्रेम वर्क के भीतर हम की करेंगे:

 उच्च उत्पन्न होने वाली भारतीय गेहूं कल्टीवस्र से विदेशज जर्मप्लाज्म से अनाज रंग का

चित्र-2: विभिन्न अनाज रगीन गेहूं, बीज

हस्तांतरणः हमने उच्च उत्पन्न होने वाली भारतीय गेहूं कल्टीवर्स पीडब्ल्यू 550, पीडब्ल्यू 621 तथा एचडी 2967 से ट्रांसफर नीला, बैंगनी तथा काले रंग के अनाज से विभिन्न विदेशज जर्मप्लाज्म का उपयोग किया है।

- 2. रंगीन गेहूं में मौजूद विभिन्न एंथोसाइनिंस के लक्षर्ण वर्णनः हमने उच्च रैज्यूलेशन मास स्पेक्ट्रोस्कोपी द्वारा विदेशज जर्मप्लाज्म एवं ब्रिडिंग लाईंस से विभिन्न एंथोसइनिंस की विशेषता तथा पृथक्करण किया है।
- 3. रंगीन गेहूं से विभिन्न उत्पादों का विकास तथा मानव स्वास्थ्य पर रंगीन गेहूं के प्रभाव का अध्ययन।

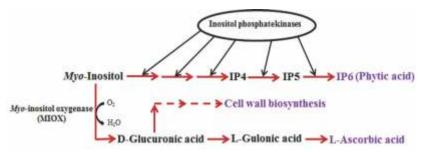
3. गेहूं से मायो—इनिसटोल ऑक्सीजेंस (एमआईओएक्स) की पहचान, क्लोनिंग एवं फंक्शनल चरित्र—चित्रण

अन्वेषक

सिद्धार्थ तिवारी

भूमिका

प्रस्ताव में हमने गेहूं में जीनों के फंक्शनल को सझमने हेतू इचछा प्रस्तावित की है, जो विटामिन सी की वृद्धि कर सके तथा फायटिक अम्ल की सकेन्द्रण की कमी भी कर सके। मायो-इनसिटोल सैल वॉल, फायटिक अम्ल तथा विटामिन-सी बायोसिंथोसिस के साथ लॉ मॉलिक्यूल्स भार सम्मिश्रणो की किरमों हेतू पूर्वगामी के रूप में जाना जाता है। सैल वॉल सम्मिश्रणों. फायटिक अम्ल एवं विटामिन का बायोसिंथेसिस हेत् सभी प्रक्रियाएं निरन्तर आश्रित है। हमने पूर्वकल्पना की है कि मायो-इनोसिटोल रिसोर्सिज चैनलाइज से विटामिन-सी बायोसिंथोसिस-पथवे कूल फाटिक अम्ल को कम कर सकता है तथा गेहूं में विटामिन-सी बायोसिंथेसिस को बढा सकता है (चित्र 3)। लक्षित जीन मायो-इनोसिटोल ऑक्सीजेंस (एमआईजोएक्स) एमआईओएक्स पथवे के साथ संबंधित एल-विटामिन-सी बायोसिंथेसिस में मुख्य एन्जाइम हैं। परियोजना पूर्ण करने के पश्चात हमने कम फायटिक अम्ल तथा उच्च एसकोर्बिक अम्ल घटकों के साथ ट्रांसजेनिक गेहूं लाइन्स पूर्वानुमान लगया है, जो लोह अवशोषण तथा जैव-उपलब्धता की वृद्धि कर सकते हैं। इस परियोजना के फ्रेम-वर्क के भीतर हम कार्य करेंगे:--


- गेहूं एमआईओएक्स की पहचान एवं फंक्शनल विशेषीकरण।
- ट्रेट विकास हेतु गेहूं में एमआईओएक्स का ऑवर—एक्सप्रेशन अध्ययन करना।
- 4. प्रायोगिक उद्देश्यों के साथ अन्वेषात्मक कार्यः भारतीय केला फल में प्रोविटामिन—ए के बायो सिंथे सिस वृद्धि हेतु मेटाबो लिक अभियांत्रिकी

अन्वेषक सिद्धार्थ तिवारी

राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान

चित्र—3: प्रस्तावित हाइपोथिसिस जहां एमआईओएक्स जीन ऑवर—एक्सप्रेस्ड होंगे तथा यह एसकोर्बिक अम्ल के बायोसिंथेसिस से अग्रणी हो सकते हैं। हमने मायो—इनोसिटोल से ग्लुकोरोनिक अम्ल सिंथेसिस के अधिक फ्लक्स का पूर्वनुमान लगाया है, यह लोअरिंग फायटिक अम्ल संकेन्द्रण से अग्रणी हो सकता है।

भूमिका

डीबीटी–बीआईआरएसी ''डेवलपमेंट एंड ट्रांसफर ऑफ टेक्नोलॉजी फ्रॉम क्रीसलैड यूनिवर्सिटी ऑफ टेक्नोलॉजी (क्यूयूटी), ऑस्ट्रेलिया टू इंडिया फॉर बायोफोर्टिफिकेशन एंड डिजीज रेसिसटेंस इन बनाना'' भीर्षक एक बह्-संस्थागत परियोजना फंडिड है। इस परियोजना के अधीन, नाबी ने क्यूयूटी, ऑस्ट्रेलिया द्वार प्रदान किए गए विटामिन–ए जीन निर्माणों के साथ भारतीय केले की दो व्यवसायिक कल्टीवर्स के जीनेटिक हस्तांतरण पर अनुसंधान किया है। तथापि, अनुसंधान कार्य का क्षेत्र क्यूयूटी द्वारा उपलब्ध जीन निर्माणों से सीमित है तथा केवल दो डेजर्ट कल्टीवर्स का हस्तांतरण यह भारतीय जनसंख्या में आखिरकार जैव उपलब्धता तथा पीवीए के अभिव्यक्ति लेवल वृद्धि की अवधि में प्रत्याशित परिणामों पर वर्तमान उपलब्ध अग्रणी नहीं है। इसलिए यह फल गूदे में कैरोटेनोड बायोसिंथेसिस वृद्धि से प्रोमोटर्स तथा आगे खोजे जाने वाले जीनो से अन्वेषणात्मक अनुसंधान प्रारंभ करने की आवश्यकता है। इस प्रस्ताव में हम केले के उच्च कैरोटेनोएड बायोसिंथेसिस में युक्त प्रोमोटरों एवं जीनों के पहचान, पृथक्करण तथा लक्षण वर्णन हेतु भारतीय जर्मप्लाज्म स्क्रीनिंग की संभावना की खोज करेंगे। सैल लाइन/ एनिमल मॉडल से विटामिन-ए हीनता को कम करने बायोफोर्टिफाइड केला पुरकीकरण की क्षमता स्थापित की जाएगी। इस परियोजना के मील-पत्थर की सफलतापूर्वक उपलब्धि प्रोविटामिन ए (β-करोटीन) भरपूर बायोफोर्टिफाईड भारतीय केले के रूप में एक उत्पाद में से ट्रांसलेटिड करेंगे। इसे

परियोजना के फ्रेम वर्क के भीतर हम कार्य करेंगे।

- भारतीय जर्मप्लाज्म में कैरोटेनोइड भरपूर केला कल्टीवर्स / किस्म विचारणीय कैरोटेनोइड प्रोफाइल की खोज करना।
- 2. भारतीय किरमों से युक्त उच्च प्रोविटामिन ए (पीवीए) से फल निर्दिष्ट प्रोमोटर्स तथा कैरोटनेइड बायोसिंथेसिस पथवे जीनों (अर्थात फायटोन सिंथेस, लाइकोपीन, एप्सीलोन साइक्लेस, डीओएक्सपी सिंथेस आदि) की पहचान पृथक्करण एवं लक्षण वर्णित करना।
- 3. प्रो—विटामिन —ए बायोफोर्टिफिकेशन हेतु निर्माण उपयोग से ट्रांसजेनिक लाइन्स का विकास। चयनित लाइन्स के राटून क्रॉप्स तथा प्लांट में अभिव्यक्ति विश्लेषण करना।
- 4. चयनित बायोफोर्टिफाइड लाइन्स को मल्टी लोकेशन फील्ड ट्राइल्स के आयोजन द्वारा एग्रोनोमिकल प्रेक्टिस हेतु मूल्यांकित किया जाएगा।
- 5. किसानों द्वारा अनुकूलन हेतु जीएम बनाना का प्रोत्साहन अंतिम स्तर पर किया जाएगा।
- 5. खाद्य फल कोटिंग सामग्रियों के रूप में आहारीय फाइबर्स का उपयोग

अन्वेषक

कौशिक मजूमदार

भूमिका

जल में घुलनशील पॉलिसक्राइडस थिकनेस प्रभाव प्रदान करती है जो पृथक खाद्य उत्पादों की सुरक्षा

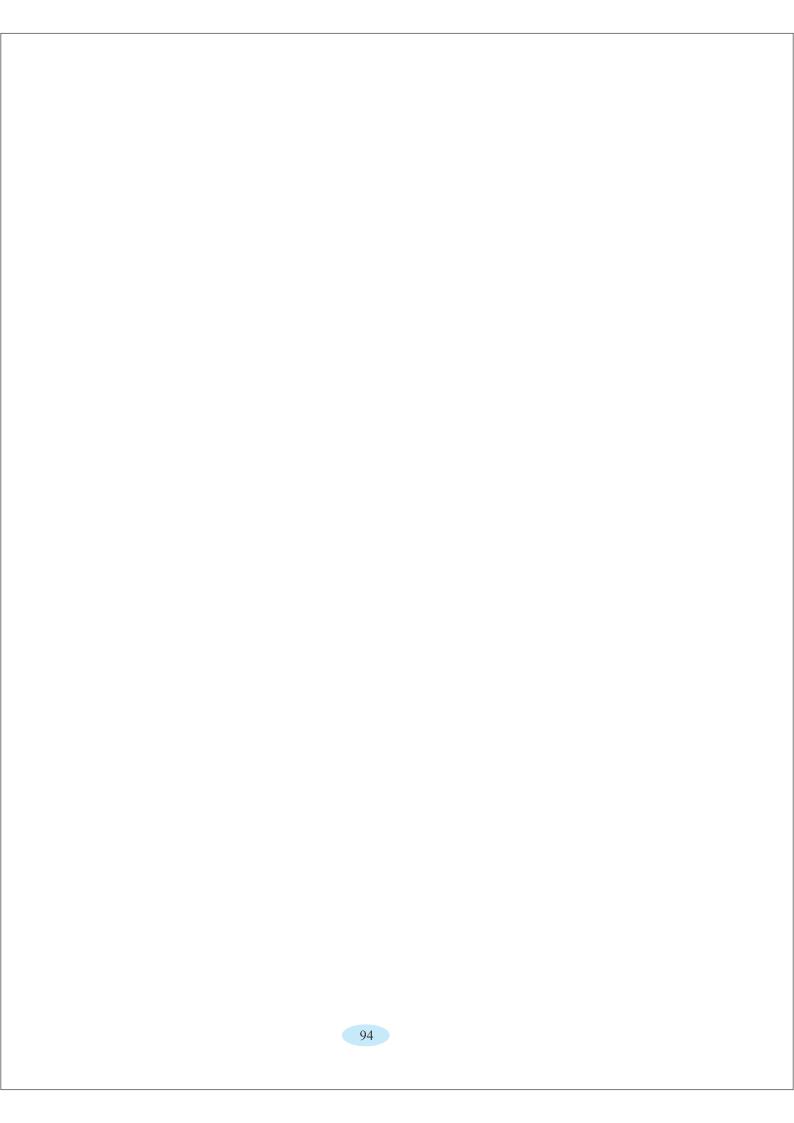
राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान

एवं सवेदी गुणवत्ता रखरखाव तथा फलों की सेल्फ-लाइफ विस्तार हेत् सिंथेटिक कोटिंग सामग्रियों से वैकल्पिक रूप से उपयोग किया जा सकता है। हाल में केवल कुछ कार्बोहाइड्रेट आधारित कोटिंग सामग्रियों सेल्युलोस एवं चिटोसन से मुख्यतः उपलब्ध है, परंतु इनके बेकार मिक्स्चर बैरियर संपत्ति के कारण यह कोटिंग सामग्रियां प्रभावकारी नहीं हैं। इसलिए वर्तमान अध्ययन में, इनके फिजिकल, फिजिकोकेमिकल संपत्तियों- जैसे कि विकोसिटी मिक्रचर बैरियर संपत्तियों के सुधार से डेरावाइजेशन द्वारा स्ट्रकचर्ली मॉडिफाई कार्बोहाइड्रेटस (पॉलिसक्राइड्स) से उच्च रणनीति अपनाई जाएगी, इसलिए यह ताजा फलों के लिए प्रभावकारी कोटिंग सामग्रियों के रूप में उपयोग की जा सकती है। इस परियोजना के फ्रेम वर्क के भीतर हम कार्य करेगे:

- विभिन्न केमिकल्स रिएक्शनों के उपयोग से 1. इनके कोरेसपोडिंग डेरिवेटिव्स जैसे कि कार्बेक्सीमिथाइलेटिड एसीटाइलटिड एवं फैट्टी एसिड इस्टरफिल्ड डेरिवेटिव्स से पॉलिसक्राइड्स (जाइलान्स, ग्लेक्टोमैंनास का केमिकल रूपांतरण)
- रूपांतरित कार्बोहाइड्रेट्स जैसे कि विस्कोसटी, मॉस्चर बेरियर संपत्ति तथा विभिन्न फिजिको-केकिल विधि उपयोग से फिल्म फॉर्मिंग दक्षता की फिजिकल संपत्तियों का निर्धारण करना।
- ताजा फलों की सेल्फ-लाइफ विस्तार हेत् उन 3. पर डेरिवेटाइज्ड कार्बोहाइड्रेट्स का उपयोग करना।

सहयोग एवं संपर्क के माध्यम से सहभागिता

- 1. नाबी एवं सेंट्रल यूनिवर्सिटी ऑफ पंजाब, बिठंडा ने दो संस्थानों के बीच मे गुणवत्त अनुसंधान एवं भीर्ष अनुसंधान कार्यक्रमों के प्रोत्साहन हेतु 28 मार्च, 2013 को एक एमओयू हस्ताक्षरित किया है।
- 2. मोहाली में बायोसाइंस कलस्टर स्थापित करने हेतु 26 नवंबर, 2012 को नेशनल इंस्टीट्यूट ऑफ फार्मास्टयूटिकल एजुकेशन एंड रिसर्च (मोहाली), इंडियन इंस्टीट्यूट ऑफ साइंटिफिक एजुकेशन एंड रिसर्च (मोहाली), पोस्ट ग्रेजुएट इंस्टीट्यूट ऑफ मेडिकल एंड मेडिकल रिसर्च (चंडीगढ़), पंजाब यूनिवर्सिटी (चंडीगढ़), सेंट्रल साइंटिफिक इंस्ट्रूमेंट्स ऑर्गेनाइजेशन (चंडीगढ़), इंडियन इंस्टीट्यूट ऑफ टेक्नोलॉजी (रोपड़) तथा पंजाब एग्रीकल्चर यूनिवर्सिटी (लुधियाना) के साथ एक एमओयू हस्ताक्षरित किया गया है।
- 3. नाबी एवं पंजाब यूनिवर्सिटी जालंधर ने तीव्रता उच्च प्राथमिकता कार्यक्रमों से विज्ञान एवं प्रौद्योगिकी के क्षेत्रों में अकादमिक एवं अनुसंधान पारस्परिक क्रियाओं के प्रोत्साहन हेतु 19 अक्तूबर, 2012 को एक एमओयू हस्ताक्षरित किया है।
- 4. नाबी एवं राष्ट्रीय लीची अनुसंधा केन्द्र (एनआरसीएल) मुजफ्फरपुर, बिहार में अनुसंधान सुविधाएं सांझा करने और संयुक्त रूप से अनुसंधान कार्य करने के लिए 16 सितंबर, 2012 को एक एमओयू हस्ताक्षरित किया।
- 5. नाबी एवं पंजाब एग्रीकल्चर यूनिवर्सिटी, लुधियाना ने कृषि एवं विभिन्न विज्ञानों के क्षेत्रों में संयुक्त रूप से अनुसंधान करने पर 14 अगस्त, 2012 को एक एमओयू पर हस्ताक्षर किए।
- 6. नाबी एवं एनआईपीआर ने आपसी सहयोग के क्षेत्र में संयुक्त अनुसधान कार्य करने, इसके अलावा सहयोग के क्षेत्र के भीतर स्टाफ, विद्यार्थियों तथा तकनीकी कर्मचारियों के प्रशिक्षण में भाग लेने हेतु 2 फरवरी, 2012 को एक एमओयू पर हस्ताक्षर किए गए।
- 7. उत्प्रेरण सम्पर्क, आर एवं डी सहयोग, मानव संसाधन विकास तथा विद्यार्थियों का डिग्री प्रदान करने, जो नाबी पर पीएचडी अनुसंधान कर रहे हैं, हेतु समीप में दो यूनिवर्सिटयों के साथ निम्नलिखित एमओयू'ज हस्ताक्षरित हैं।
 - (i) 27 मई 2011 को पंजाब यूनिवर्सिटी, चंडीगढ़ के साथ एमओयू।
 - (ii) 29 मार्च 2011 को गुरू जम्भेश्वर विज्ञान एवं प्रौद्योगिकी विश्वविद्यालय के साथ एमओयू।
- 24 नवंबर, 2010 को एस एंड टी में को—ऑप्रेश हेतु कनेडियन इंस्टीट्यूट के साथ निम्नलिखित तीन एमओयू'ज पर हस्ताक्षर किए।
 - (i) राष्ट्रीय अनुसंधान परिषद, प्लांट बायोटेक्नोलॉजी इंस्टीट्यूट, ससकाटून के साथ एमओयू।
 - (ii) यूनिवर्सिटी ऑफ ससकाटचवन, ससकाटून के साथ एमओयू।
 - (iii) जीनाम प्राईरी, संसकाटून के साथ एमओयू।


बाह्य अनुदान एवं निधियाँ

क्र.सं.	परियोजना अन्वेषक	परियोजना का नाम	फंडिंग एजेंसी
1.	डॉ. सुधीर पी. सिंह	ऐ नोवल स्ट्रेटजी फॉर डेवलपिंग सियोन प्लाट्स ऑफ डिजायर्ड फिनोटाइप बाय यूसिंग एन आरएनएआई डिलीवरिंग रूटस्टॉक	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया
2.	डॉ. सिद्धार्थ तिवारी	ट्रांसफर एंड एवेल्यूऐशन ऑफ इंडियन बनाना विद प्रो—विटामिन ए (पीवीए) कंस्ट्रक्ट्स। दिस प्रोजेक्ट इज ए पार्ट ऑफ द मल्टी—इंस्टीट्यूशनल प्रोजेक्ट एनटाइटल्ड डेवलपमेंट एंड ट्रांसफर ऑफ टेक्नोलॉजी फरॉम क्वींसलैंड यूनिवर्सिटी ऑफ टेक्नोलॉजी (क्यूटीए), ऑस्ट्रेलिया टू इंडिया फॉर बायोफोरटिफिकेशन एंड डिसिज रेसिसटेंस इन बनाना।	बयोटेक्नोलॉजी इंडस्ट्री रिसर्च असिस्टेंटस कौंसिल (बीईआरएसी), डिपार्टमेंट ऑफ बायोटेक्नोलॉजी, गर्व. ऑफ इंडिया
3.	डॉ. अजय के. पाण्डे	मेटाबोलिक इंजीनियरिग ऑफ फाइटिक एंड पथवे टू एन्हांस आयरन बायोएविलिबल्टिी पद व्हीट	डिपार्टमेंट ऑफ बायोटेक्नोलॉजी, गर्व. ऑफ इंडिया
4.	डॉ. कांथी किरन के.	एफेक्ट्स ऑफ फिंगर मिलेट एंड कोडो मिलेट एरेबीनॉक्सीलन ऑन एडिपोजेनसिस एंड एसोसिटेड इनफ्लेमेट्री मार्कर्स ए न्यूट्रीजेनोमािक स्टडी	डिपार्टमेंट ऑफ बायोटेक्नोलॉजी, गर्व. ऑफ इंडिया
5.	डॉ. कांथी किरन के.	ए न्यूट्रोजेनोमिक स्टडी टू असेस द रोल ऑफ पॉलीफिनोल्स फरॉम एल्यूसाइन कोराकाना (फिंगर मिलेट) एंड पासपलम स्कोरोबिकूलम (कोडो मिलेट) ऑन द रेगुलेशन ऑफ एडिपोजेनसिस	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया
6.	डॉ. महेन्द्र बिश्नोई	स्टडीज ऑफ ट्रांजिएंट रिसेप्टर पोंटैंशियल (टीआरपी) चैनल मेडिऐटड मोड्यूलेशन ऑफ एडिपोजेनसिस एंड ओबेसटी बाय डाईट्री मोलेक्यूल्स	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया
7.	डॉ. महेन्द्र बिश्नोई	न्यूट्रीजेनोमिक अप्रोच टू अंडरस्टैंड द रोल ऑफ टीआरपी चैनलए एक्टिवेटिंग फूड कम्पानेंट्स इन एडीपोस टिश्यू इनफ्लेमेशन	डिपार्टमेंट ऑफ बायोटेक्नोलॉजी, गर्व. ऑफ इंडिया
8.	डॉ. कौशिक मजूमदार	वैरायबिल्टि इन द फाइन स्ट्रक्चर्स ऑफ फेरूलयॉल अर्बेनॉक्सीलान्स फरॉम इंडियन मिलेट वैरायटिज एंड देयर कॉन्सीक्यूऐंस ऑन एंटी—ऑक्सीडेंट एक्टिविटी	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया
9.	डॉ. सुखविन्दर पी. सिंह	मेटाबोलोमिक्स अप्रोच टू डिस्कवरी एंड वैलीडेशन ऑफ बायोमार्कर्स फॉर आर्टिकल फ्रूट रिपेनिंग इंड्यूस्ड थ्रू प्रोहिबीटेड एंड एक्सप्टेबल रिपेनिंग ऐलीसिटोर्स	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया
10.	डॉ. मोनिका गर्ग	आईडेंटिफिकेशन ऑफ सेलिक डिसीज एपीटोप्स इन इंडियन व्हीट कल्टीवर्स एंड देयर मोड्यूलेशन इल आरएनएआई एंड ब्रीडिंग अप्रोचिज	डिपार्टमेंट ऑफ बायोटेक्नोलॅजी, गर्व. ऑफ इंडिया
11.	डॉ. मोनिका गर्ग	क्रोमोसोम सपेसिफिक वाइड हाईब्रिडजेशन फॉर इम्प्रूवमेंट ऑफ ब्रेड मेकिंग क्वालिटी ऑफ व्हीट	एसईआरबी, डीएसटी, गर्व ऑफ इंडिया
12.	डॉ. सिद्धार्थ तिवारी	आईडेंटिफिकेशन, क्लोनिंग एण्ड फंक्शनल करेक्टराइजेशन ऑफ मायो—इनोसिटोल ऑक्सीजेंस (एमआईओएक्स) फरॉम व्हीट	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया
13.	डॉ. हरिओम यादव	डेवलपमेंट ऑफ नोवल कम्पोनेंट्स फॉर ट्रीटमेंट एंड टाइप 2 डायबिटिज	एसईआरबी, डीएसटी, गर्व. ऑफ इंडिया

मुख्य परिसर में अवसंरचना स्थापना की प्रगति

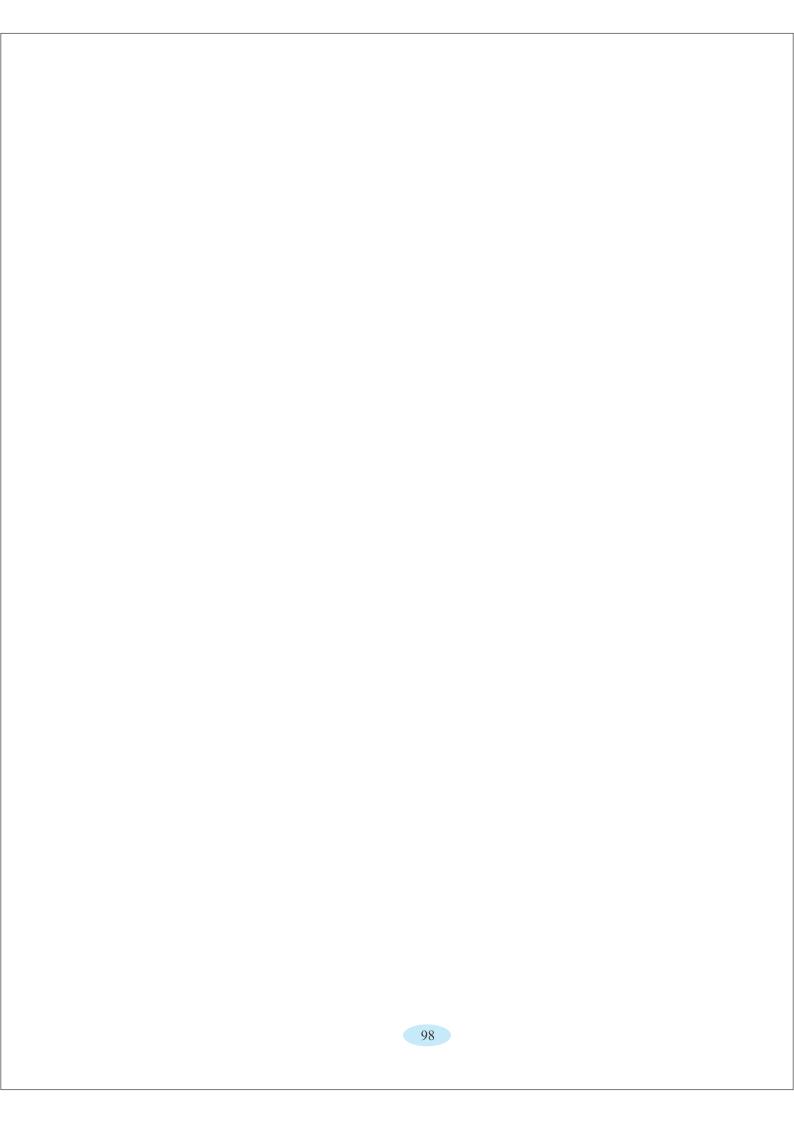
नाबी के मुख्य परिसर का सैक्टर—81, मोहाली में प्रस्तावित मास्टर प्लान।

नाबी / सीआईएबी के सैक्टर-81, मोहाली में बनने वाले परिसर का मॉडल।

राष्ट्रीय एवं अंतर्राष्ट्रीय सम्मेलनों / कार्यशालाओं में प्रतिभागिता

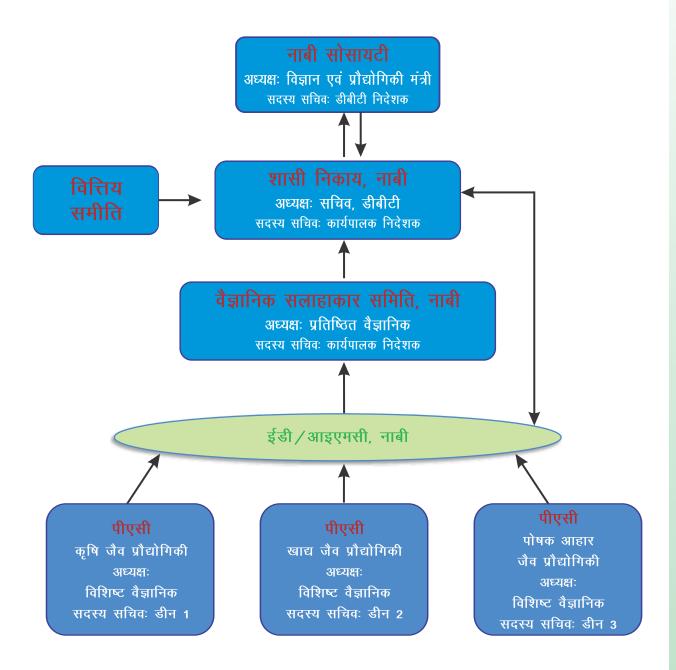
- 1. डॉ. संतोष के. उपाध्याय को आईएनएसए यंग साईटिस्ट अवार्ड 2013 हेतु 25 अप्रैल 2013 को राष्ट्रीय विज्ञान अकादमी, नई दिल्ली पर उसका अनुसंधान कार्य प्रस्तुत करने पर मनोनित किया गया।
- 2. डॉ. सुखिपन्दर पी. सिंह को 24 जून, 2013, चंडीगढ़ को एसीकैम इंडिया द्वारा आयोजित खाद्य सुरक्षा एवं कैशलों के साथ गुणवत्ता प्रसंस्करण उद्योगों, मार्केट, रिटेल्स के लिंकिंग ग्रोथ ड्राइवर्स पर राष्ट्रीय कॉन्फ्रेंस ''फीडिंग प्रसंस्करण उद्योग हेतु ताजा बागवानी उत्पन्न करने के कर्टेलिंग पोस्टहार्वेस्ट हानियों'' पर चर्च करने के लिए आमंत्रित किया गया था।
- 3. डॉ. मोनिका गर्ग को 11 जुलाई 2013 को सीडीएसी मोहाली (पंजाब) द्वारा आयोजित ''कृषिय अनुसंधान हेतु जलवायु नियंत्रण 'ग्रीनहाऊस' पर राष्ट्रीय कार्यशाला पर ''ग्रीनहाऊस उपयोग में अनुभव'' पर चर्चा प्रदान करने हेतु आमंत्रित किया गया था।
- 4. डॉ. सिद्धार्थ तिवारी को 11 जुलाई, 2013 को सीडीएसी मोहाली (पंजाब) द्वारा आयोजित ''कृषिय अनुसंधान हेतु जलवायु नियंत्रण ग्रीनहाऊस'' पर एक राष्ट्रीय कार्यशाला हेतु आमंत्रित किया गया था। चर्चा का विषय ''ग्रीन हाऊस में ट्रांसजेनिक एवं टिश्यू कल्चर रेज्ड प्लांटस का प्रबंधन'' था।
- 5. डॉ. सुखबीर पी. सिंह को 30 अगस्त, 2013 को एमेटी यूनिवर्सिटी, नोयड, यूपी द्वारा आयोजित भारत में बागवानी उत्पादन के पोस्टहार्वेस्ट प्रबंधन पर राष्ट्रय कॉन्फ्रेंस में ''स्टेकहॉल्डर ड्राईवन पोस्टहार्वेस्ट रिसर्च एवं आउटरीच इन इंडिया'' पर व्याख्यान देने हेतु आमंत्रित किया गया था।
- 6. डॉ. सुखिवन्द पी. सिंह को 2—5 सितंबर 2013 के दौरान क्रेनाफिल्ड यूनिवर्सिटी एंड इंटरनेशनल सोसायटी फॉर हार्टिकल्वर साइंस (आईएसएचएस) बेडफोर्ड, यूनाईटेड किंगडम (यूके) द्वारा आयोजित चेन्स (एमक्यूयूआईसी—2013) में गुणवत्ता प्रबंधन पर टप् अंतर्राष्ट्रीय कान्फ्रेंस में ''फायटोसैनेटरी रिक्वायरमेंट फॉर फ्रैस मैंगो फ्रुटः औपोर्चुनिटिज एंड चैलेंजिस इंडिया इन हाई वैल्य मार्केट्स'' पर व्याख्यान प्रदान करने हेतु आमंत्रित किया गया था।
- 7. डॉ. सुखिवन्दर पी. सिंह ने 20—23 सितंबर, 2013 के दौरान नेशनल इंस्टीट्यूट ऑफ इम्यूनोलॉज (एनआईआई) दिल्ली में ''मास्टर क्लास ऑन बायो—इंटरप्रिन्योरशिप—एसिलरेटिंग इनोवेशन्स टू मार्केटप्लेस'' में भाग लिया।
- 8. डॉ. जॉय के रॉय तथा डॉ. मोनिका गर्ग ने नई दिल्ली में 20—23 नवंबर 2013 के दौरान हुई राईस फंक्शनल जीनोमिक्स (आईएसआरएफजी) पर 11वां अंतर्राष्ट्रीय सिम्पोजियम में भाग लिया।
- 9. डॉ. सुखिवन्दर पी. सिंह ने 25—26 नवंबर, 2013 के दौरान सेंटर ऑफ एक्सिलेंस, एबीएससीआईएएक्स द्वारा आयोजित हाई रेज्यूलेशन मास स्पेक्ट्रोमीटर उपयोग से मेटाबोलोमिक्स पर कार्यशाला पर 'मेटाबोलोमिक्स एक्सिलेंश इन क्वालिटर एंड सेफ्टी ऑफ फ्रैश फ़ुट'' पर व्याख्यान प्रदान किया।
- 10. श्री श्रीकांत मंत्री ने एनआईबीएमजी कल्याणी, पश्चिम बंगाल में 29—30 नवंबर 2013 को हुई ऑटोनोम्स इंस्टीट्यूट ऑफ डीबीटी हेतू प्रथम वार्षिक आईसीटी बैठक में भाग लिया।
- 11. डॉ. महेन्द्र बिश्नोई ने 8—13 दिसंबर, 2013 के दौरान जिनेवा स्विट्जरलैंड में हुई पार्किन्स डिजीज एवं संबंधित डिसऑर्डर पर ग्यर्ल्ड कॉन्फ्रेंस में भाग लिया तथा मौखिक प्रजेंटेशन प्रदान की।
- 12. डॉ. शैलेष शर्मा को 16—17 दिसंबर, 2013 के दौरान गेहूं अनुसंधान निदेशालय द्वारा आयोजित ''इमर्जिंग ट्रेडस इन एग्री बायो—इनफोर्मेटिक्स (ईटीएबी)'' पर अपना विषय प्रस्तुत करने के लिए आमंत्रित किया

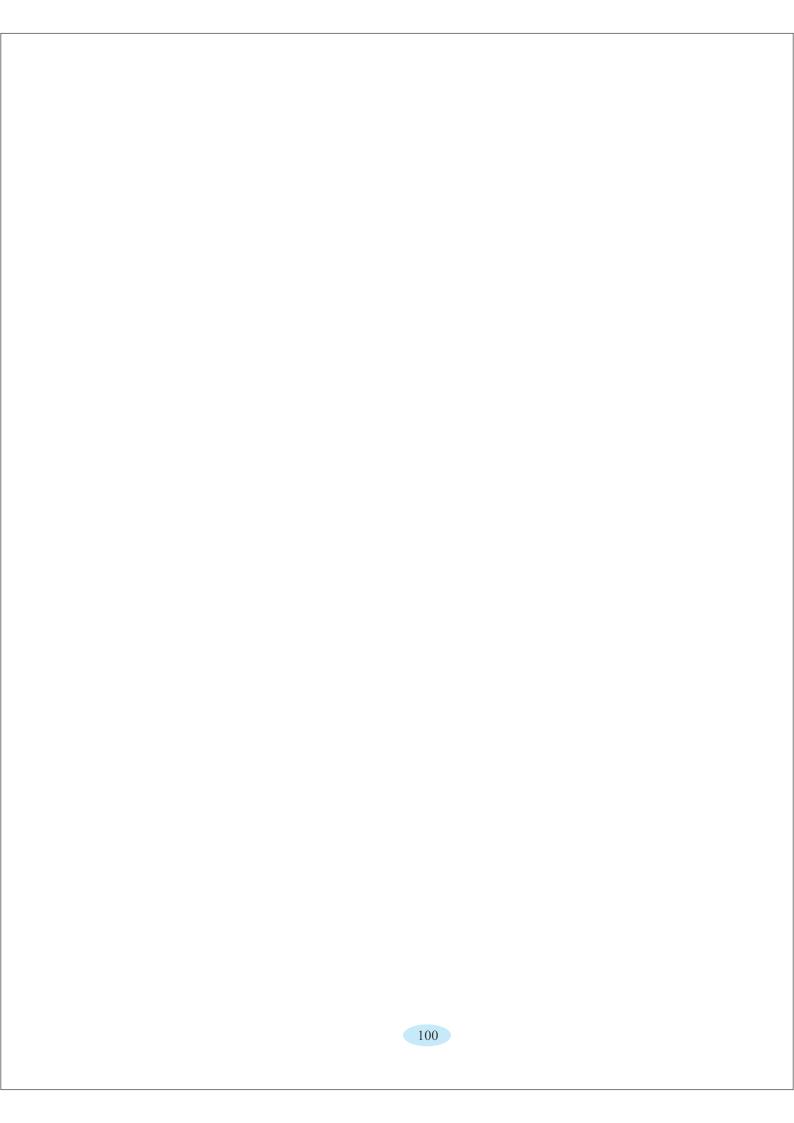
राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान

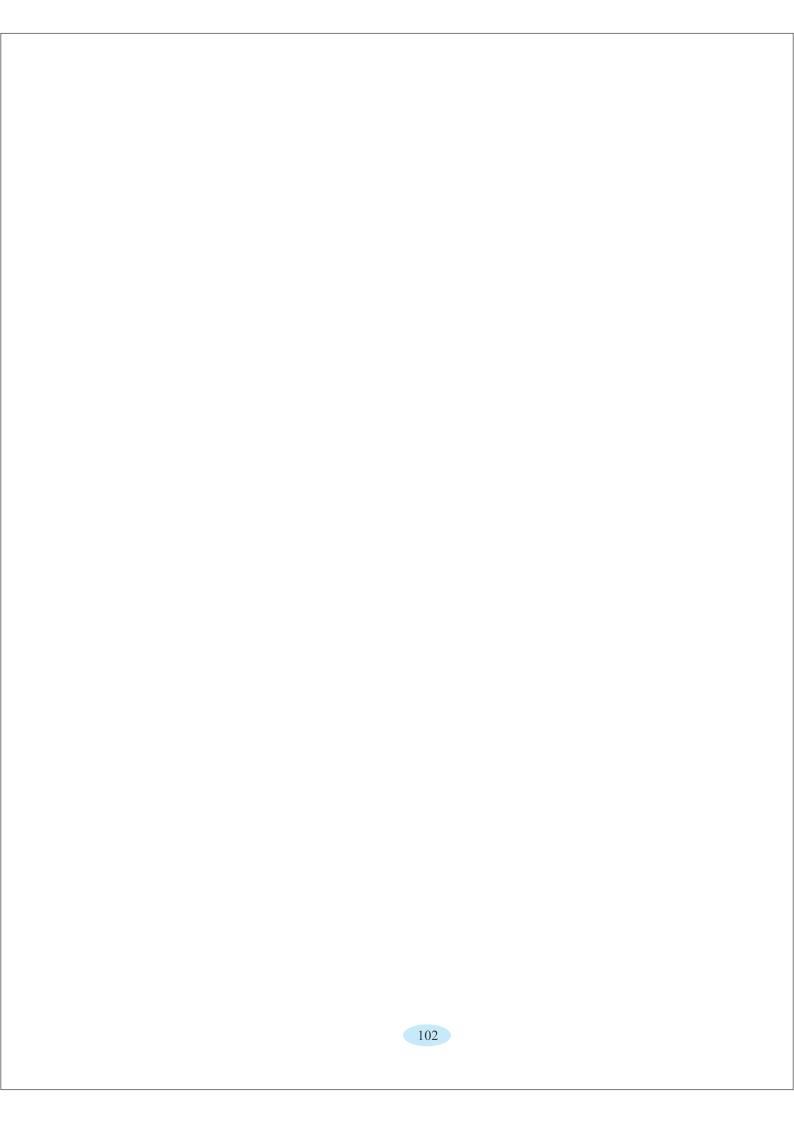

गया था।

- 13. डॉ. संतोष के उपाध्याय 26—28 दिसंबर, 2013 के दौरान संजय गांधी पोस्ट ग्रेजुएट इंस्टीट्यूट ऑफ मेडिकल साइंसेज, लखनऊ में पधारे, ऑएनएसए वार्षिक बैठक में भाग लिया तथा आईएनएसए यंग साइंटिस्ट अवार्ड 2013 प्राप्त किया।
- 14. डॉ. महेन्द्रा बिश्नोई ने 8–9 फरवरी 2014 के दौरान नेशनल इंस्टीट्यूट ऑफ फार्मास्टयूटिकल एजुकेशन एंड रिसर्च (नाइपर) मोहाली में हुई हृदय अनुसंधान अंतर्राष्ट्रीय समिति (भारतीय सेक्शन) की 11वीं वार्षिक कॉन्फ्रेंस के सत्र में भाग लिया।
- 15. डॉ. जॉय के रॉय ने 4-6 मार्च, 2014 के दौरान जीबी पैंट यूनिवर्सिटी ऑफ एग्रीकल्चर एंड टेक्नोलॉजी, पटनागर पर हुई ''द साइंस ऑफ ऑमिक्स फॉर एग्रीकल्चरल प्रोडिक्टिविटीः फ्यूचर प्रस्पेक्टिव्स'' पर राष्ट्रीय कॉन्फ्रेंस में भाग लिया तथा लेक्चर प्रदान किया।
- 16. डॉ. सुधीर पी. सिंह को 4—6 मार्च 2014 के दौरान जीबी पैंट यूनिवर्सिटी ऑफ एग्रीकल्चर एंड टेक्नोलॉजी पटनागर पर आयोजित ''द साइंस ऑफ ऑमिक्स फॉर एग्रीकल्चरल प्रोडिक्टिविटी : फ्यूचर प्रस्पेक्टिव्स'' पर एक राष्ट्रीय कॉन्फ्रेंस में व्याख्यान प्रदान करने हेतु आमंत्रित किया गया था। व्याख्यान का विषय ''आयरन एक्यूम्यूलेशन इन व्हीट ग्रेंसएंड मॉलिक्यूलर स्टिडज टॅ इनहांस इट्स बायो—एवेलोबिलिटी'' था।
- 17. डॉ. सुखविन्दर पी. सिंह तथा डॉ. सिद्धार्थ तिवारी ने आईएसबीटी, ज्ञान भाहर, सेक्टर—81, मोहाली में 5—6 मार्च, 2014 से बीआईआरएसी तथा इंडियन स्कूल ऑफ बिजनेस (आईएसबी) के साथ सहयोग से पंजाब राज्य विज्ञान एवं प्रौद्योगिकी परिषद (पीएससीएसटी) वर्कशॉप फॉर प्रोमोशन ऑफ बायो—साइंस इंडस्ट्री इन पंजाब" में भाग लिया।
- 18. डॉ. सुखविन्दर पी. सिंह को 28 मार्च 2014 को फल विज्ञान विभाग, पंजाब कृषि विश्वविद्यालय लुधियाना द्वारा आयोजित फल विज्ञान में रिसेंट डेवलपमेंट एवं एडवांसमेंट्स पर लेक्चर सिरिज आमंत्रण के दौरान ''फ्यूचर ट्रैंडस इन पोस्टहार्वेस्ट साइंसः 'ओमिक्स' एप्लीकेशन्स'' पर व्याख्यान प्रदान करने हेतु आमंत्रित किया गया था।

नाबी में अंतर्राष्ट्रीय अतिथि


- 1. आगामी सहयोग की सम्भावनाओं की खोज से 27 मई 2013 को यूरोप अर्थात पार्को टेक्नोलॉजी पाडानो (लोम्बार्डली, इटली), एग्रोपोलिस इंटरनेशनल (लैंग्वेडोक—रौंसिलिअन, फ्रांस) तथा उस्ट एनवी वर्धिंग्म नीदरलैंड) के तीन मेजर एग्री—फुड बायोटेक क्ल्सटर्स में प्रतिनिधियों से युक्त एक यूरोपियन डेलिगेशन आगामी सहयोग की सम्भावनाओं की खोज हेतु 27 मई 2013 को नाबी पर पधारे।
- 2. पोस्टहार्वेस्ट एजुकेशन फाउंडेश (डीआरएस लिसा किटिनोजा, पैंट्रीक ब्राउन एवं लिजाने व्हीलर) तथा एग्रीबिजनेस एसोसिएट्स, आईएनसी (गुरबिन्दर गिल) के प्रतिनिधियों से युक्त यूएसए से डेलिगेशन आगामी सहयोगों की सम्भावनाओं की खोज हेतू 09 अगस्त, 2013 को नाबी पर पधारे;
- 3. बीआईएनआरएसी, इंडिया—क्यूयूटी, ऑस्ट्रेलिया बनाना बायोफोर्टिफिकेशन प्रोजेक्ट के अधीन 15—20 सितंबर 2013 के दौरान बनाना ट्रांसफोर्मेश एंड ट्रेकर सॉफ्टवेयर पर एक अंतर्राष्ट्रीय कार्यशाला आयोजित की गई थी। बैठक एवं कार्यशाला बीआईआरएसी, नई दिल्ली, क्यूयूटी, ऑस्ट्रेलिया, नाबी, मोहाली, बीएआरसी, मुम्बई, एनआरसीबी, ट्राइकी, कोय्म्बटूर के प्रतिभागियों द्वार भाग लिया गया।




शासन

संस्थान का प्रबंधन

क. नाबी सोसायटी के सदस्य

श्री जयपाल सुदिनी रेड्डी

माननीय विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्री विज्ञान एवं प्रौद्योगिकी तथा पृथ्वी विज्ञान मंत्रालय भारत सरकार, नई दिल्ली (सोसायटी प्रमुख)

डॉ. के. विजय राघवन्

सचिव जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली (अध्यक्ष)

सुश्रि अनुराधा मित्रा

वित्त सलाहकार वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् नई दिल्ली

डॉ. एन. सत्यमूर्ति

निदेशक भारतीय विज्ञान एवं शिक्षा अनुसंधान संस्थान मोहाली

डॉ. वी. प्रकाश

(पूर्व निदेशक, सीएफटीआरआइ) प्रतिष्ठित वैज्ञानिक वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् मैसूर

डॉ. बी. सेशिकरण

निदेशक राष्ट्रीय पोषण संस्थान, हैदराबाद

डॉ. एस. नागाराजन

पूर्व अध्यक्ष प्रोटैक्शन ऑफ प्लांट वैराइटीज़ एंड फार्मर्स राइट्स अथोरिटी नई दिल्ली

डॉ. राजेश कपूर

सलाहकार, जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (८ फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

ख. शासी निकाय (जीबी)

डॉ. के. विजय राघवन्

सचिव जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली (अध्यक्ष)

सुश्रि अनुराधा मित्रा

वित्त सलाहकार वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् नई दिल्ली

डॉ मजू शर्मा

(पूर्व सचिव, डीबीटी) प्रधान एवं कार्यपालक निदेशक इंडियन इंस्टिट्यूट ऑफ एडवांस्ड रिसर्च गुजरात

डॉ. सी. आर. भाटिया

पूर्व सचिव जैव—प्रौद्योगिकी विभाग नई दिल्ली

डॉ. अशोक डी. बी. वैद्य

अनुसंधान निदेशक कस्तूरबा हैल्थ सोसायटी मैडिकल एंड रिसर्च सैन्टर, मुंबई

डॉ. बी. सेशिकरण

निदेशक राष्ट्रीय पोषण संस्थान, हैदराबाद

डॉ. एन. सत्यमूर्ति

निदेशक, भारतीय विज्ञान एवं शिक्षा अनुसंधान संस्थान, मेहाली

डॉ. बी. सिवा कुमार

पूर्व निदेशक नैश्नल इस्टिट्यूट ऑफ न्युट्रिशियन, सिकंदराबाद

डॉ. एस. नागाराजन

पूर्व अध्यक्ष प्रोटैक्शन ऑफ प्लांट वैराइटीज़ एंड फार्मर्स राइट्स अथोरिटी, नई दिल्ली

डॉ. आर. एस. परोदा

(पूर्व महानिदेशक, आइसीएआर) ट्रस्ट फॉर एडवांस्मैंट ऑफ एग्रीकल्चर साइंसिस, नई दिल्ली

डॉ. जे. एस. पाई (पूर्व निदेशक, यूआइसीटी) कार्यपालक निदेशक,

प्रोटीन फूड्स एंड न्युट्रिशियन डिवलपमैंट एसोसिएशन ऑफ इंडिया, मुंबई

डॉ. एन. के. गांगुली

(पूर्व महानिदेशक, आइसीएमआर) विशिष्ट जैवप्रौद्योगिकी प्रोफंसर ट्रांज़िशनल हैल्थ साइंस एंड टैक्नोलॉजी इंस्टिट्यूट नई दिल्ली

डॉ. वी. प्रकाश

(पूर्व निदेशक, सीएफटीआरआइ) प्रतिष्ठित वैज्ञानिक वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद्, मैसूर

डॉ. राजेश कपूर

सलाहकार, जैव—प्रौद्योगिकी विभाग, विज्ञान एवं प्रौद्योगिकी मंत्रालय, नई दिल्ली

डॉ. विकास ऋषि

वैज्ञानिक 'ई' राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली

डॉ. जॉय के. रॉय

वैज्ञानिक 'डी', राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान, मोहाली

डॉ. सुखविंदर पी. सिंह

वैज्ञानिक 'सी' राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (८ फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

ग. वित्त समिति

डॉ. के. विजय राघवन्

सचिव जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली (अध्यक्ष)

सुश्रि अनुराधा मित्रा

वित्त सलाहकार वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् नई दिल्ली

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (8 फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

डॉ. राजेश कपूर

सलाहकार जैव-प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली

डॉ. आर.एस. सांगवान

सीईओ न्वोनमेषी एवं अनुप्रयुक्त जैव—प्रसंस्करण केन्द्र मोहाली

डॉ. विकास ऋषि

वैज्ञानिक 'ई' राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली

डॉ. जॉय के. रॉय

वैज्ञानिक 'डी' राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली

श्री श्रीकांत सुभाष मंत्री

वैज्ञानिक 'सी' राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली

श्री सुनीत वर्मा

वित्त अधिकारी राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (गैर-सदस्यीय सचिव)

घ. वैज्ञानिक सलाहकार समिति (एसएसी)

डॉ. आर. एस. परोदा

(पूर्व महानिदेशक, आइसीएआर) ट्रस्ट फॉर एडवांस्मैंट ऑफ एग्रीकल्चर साइंसिस, नई दिल्ली (अध्यक्ष)

डॉ. सी. आर. भाटिया

पूर्व निदेशक, जैव प्रौद्योगिकी विभाग, नई दिल्ली

डॉ. दीपक पेन्टल

कुलपति, दिल्ली विश्वविद्यालय, नई दिल्ली

डॉ. बी. सिवा कुमार

पूर्व निदेशक, राष्ट्रीय पोषण संस्थान, सिकंदराबाद

डॉ. वी. प्रकाश

(पूर्व निदेशक, सीएफटीआरआइ) प्रतिष्ठित वैज्ञानिक, सीएसआइआर, मैसूर

डॉ. इमरान सिद्दकी

वैज्ञानिक, सीसीएमबी, हैदराबाद

डॉ. अक्षय कुमार प्रधान

प्रोफेसर, दिल्ली विश्वविद्यालय, नई दिल्ली

डॉ. अनुरा वी. कुरपद

डीन सेंट जॉन मेडिकल कॉलेज बेगलुरू

डॉ. एच. पी. एस. सचदेव

वरिष्ठ परामर्शदाता (पैड्रिएटिक्स), सीता राम भारतीय विज्ञान और अनुसंधान संस्थान, नर्ड दिल्ली

डॉ वेकटेश रॉव

पूर्व निदेशक, केन्द्रीय खाद्य प्रौद्योगिकी अनुसंधान संस्थान, मैसूर

डॉ. अरुण शर्मा

प्रतिष्ठित वैज्ञानिक (खाद्य प्रौद्योगिकी), भाभा परमाणु अनुसंधान केन्द्र, मुंबई

डॉ. राजेश कपूर

सलाहकार जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (8 फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

ड. कार्यक्रम सलाहकार समिति (पीएसी): कृषि-जैवप्रौद्योगिकी

डॉ. सी. आर. भाटिया

पूर्व सचिव जैव-प्रौद्योगिकी विभाग नई दिल्ली (अध्यक्ष)

डॉ. कैलाश चन्द्र बसल

निदेशक, नैश्नल ब्यूरो ऑफ प्लांट जैनेटिक रिसोर्सिस पूसा, नई दिल्ली

डॉ. जी. के. गर्ग

निदेशक (आइटीआर) कृषिधान रिसर्च फाउंडेशन प्राइवेट लिमिटेड जलाना

डॉ. सुनील कुमार मुखर्जी

वैज्ञानिक, इंटरनैश्नल सैन्टर फॉर जैनेटिक इंजीनियरिंग एंड बायोटैक्नोलॉजी नई दिल्ली

डॉ. किरण के. शर्मा

प्रिंसिपल वैज्ञानिक (सैल बायोलॉजी) इंटरनैश्नल क्रॉप्स रिसर्च इंस्टिट्यूट फॉर द सैमि–एरिड ट्रॉपिक्स हैदराबाद

डॉ. रमेश सोन्ती

उप निदेशक, कोशिकीय एवं परमाणु जीव विज्ञान केन्द्र,

हैदराबाद

डॉ अशोक के सिह

वरिष्ठ वैज्ञानिक एवं कार्यक्रम प्रमुख (चावल) जैनेटिक्स प्रभाग, भारतीय कृषि अनुसंधान संस्थान, नई दिल्ली

डॉ. टी. मोहपात्रा

निदेशक केन्द्रीय चावल अनुसंधान संस्थान कटक

डॉ. राजेश कपूर

सलाहकार जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (8 फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

च. कार्यक्रम सलाहकार समिति (पीएसी)ः खाद्य एवं पोषक जैवप्रौद्योगिकी

डॉ. वी. प्रकाश

(पूर्व निदेशक, सीएफटीआरआइ) प्रतिष्ठित वैज्ञानिक, वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् मैसूर (अध्यक्ष—खाद्य जैव प्रौद्योगिकी)

डॉ. बी. सिवा कुमार

पूर्व निदेशक, राष्ट्रीय पोषण संस्थान, सिकंदराबाद (अध्यक्ष-न्यूट्रिशनल जैव प्रौद्योगिकी)

डॉ. अप्पू रॉव

वैज्ञानिक, केन्द्रीय खाद्य प्रौद्योगिकी अनुसंधान संस्थान, मैसूर

डॉ. वी. के. बातिश

पूर्व प्रमुख एवं विशिष्ट वैज्ञानिक, मॉल्क्यूलर बायोलॉजी यूनिट एनडीआरआई, करनाल

डॉ. के. माधवन नायर

उप—निदेशक, राष्ट्रीय पोषण संस्थान, हैदराबाद

डॉ. एस. के. रॉय

प्रतिष्ठित प्रोफेसर एवं परामर्शदाता एफएओ भारतीय कृषि अनुसंधान संस्थान नई दिल्ली

डॉ. एच. पी. एस. सचदेव

वरिष्ठ परामर्शदाता (पैड्रिएटिक्स), सीता राम भारतीय विज्ञान और अनुसंधान संस्थान, नई दिल्ली

डॉ. एच. एन. मिश्रा

प्रोफेसर कृषि एवं खाद्य अभियांत्रिकी विभाग भारतीय प्रौद्योगिकी संस्थान खड्गपुर

डॉ. भुपेन्द्र खटकर

अध्यक्ष, खाद्य प्रौद्योगिकी विभाग, गुरू जम्भेश्वर युनिवर्सिटी ऑफ एस एंड टी हिसार

डॉ. एम. सी. वरदराज

चीफ वैज्ञानिक, केन्द्रीय खाद्य प्रौद्योगिकी अनुसंधान संस्थान, मैसूर

डॉ. राजेश कपूर

सलाहकार जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (8 फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

छ. भवन समिति

डॉ. वी. एस. चौहान

निदेशक जेनेटिक इंजीनियरिंग एवं जैवप्रौद्योगिकी अंतर्राष्ट्रीय केन्द्र, नई दिल्ली (अध्यक्ष)

डॉ. राकेश तुली

पूर्व कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली (सदस्य सचिव) (8 फरवरी '10 से 30 सितम्बर '13)

डॉ. अखिलेश कुमार त्यागी

कार्यपालक निदेशक राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान नई दिल्ली (सदस्य सचिव) (1 अक्तूबर '13 से अब तक)

डॉ. आर. एस. सांगवान

सीईओ न्वोनमेषी एवं अनुप्रयुक्त जैव—प्रसंस्करण केन्द्र मोहाली

सुश्री अनुराधा मित्रा

वित्त सलाहकार वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् नई दिल्ली

डॉ. आर. एस. खांडपुर

महानिदेशक पुष्पा गुजराल साइंस सिटी चण्डीगढ़

डॉ. राजेश कपूर

सलाहकार जैव—प्रौद्योगिकी विभाग विज्ञान एवं प्रौद्योगिकी मंत्रालय नई दिल्ली

इजीनियर एन के वर्मा

चीफ इंजीनियर वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद् नई दिल्ली

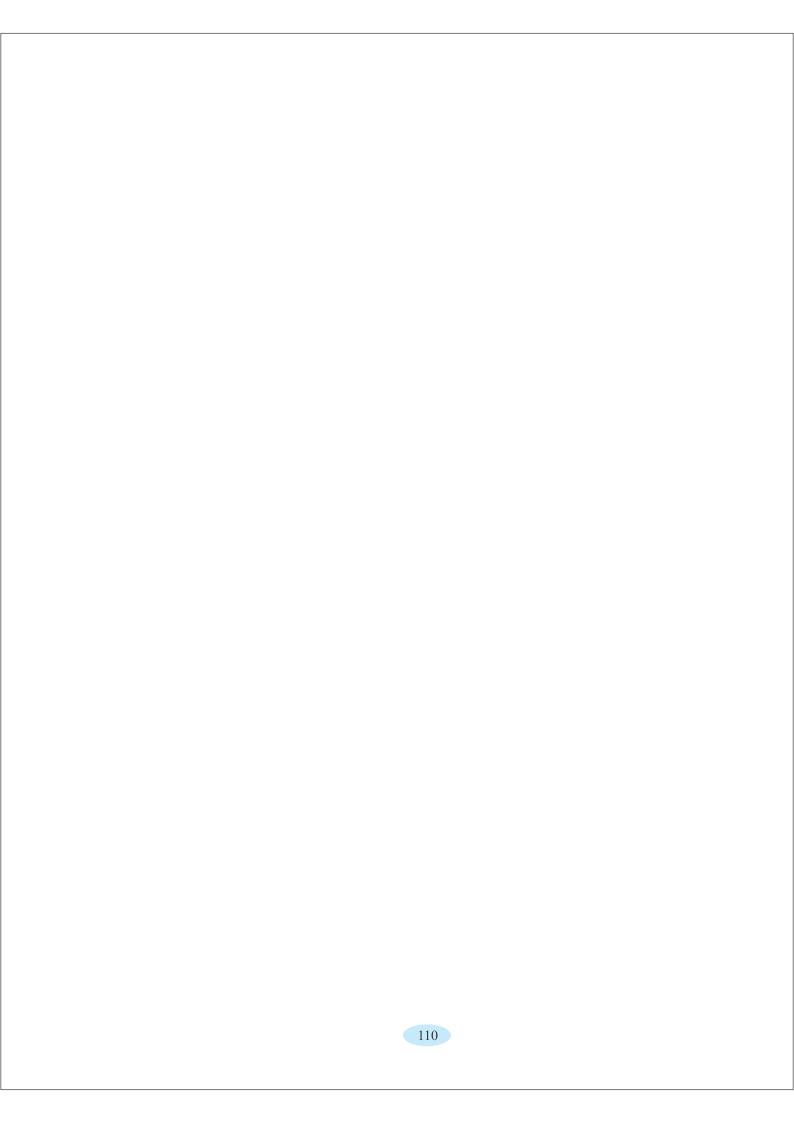
डॉ. के. के. कौल

पूर्व चीफ टाउन प्लानर ग्रेटर मोहाली एरिया डिवलपमैंट अथोरिटी चण्डीगढ़

डॉ. ए. वामसी कृष्णा

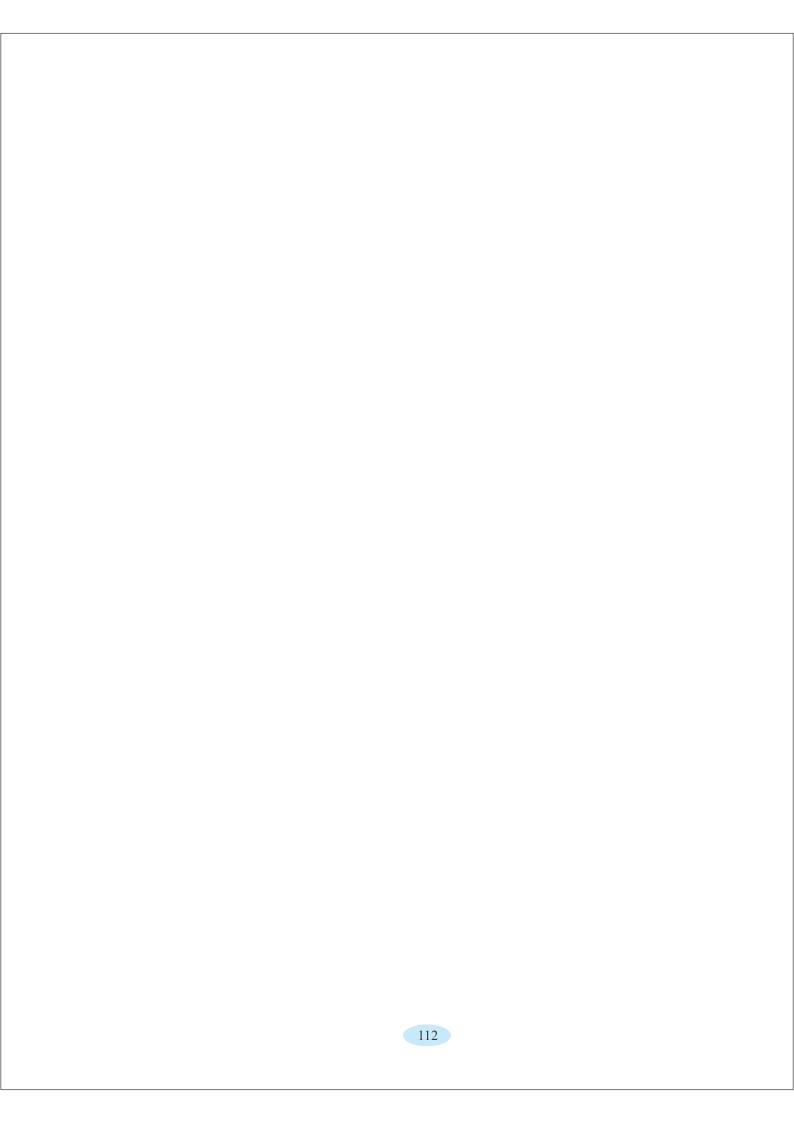
वैज्ञानिक 'सी' जैव प्रौद्योगिकी विभाग नई दिल्ली

डॉ. श्रीशान राघवन्


संयुक्त सचिव जैव प्रौद्योगिकी विभाग नई दिल्ली

डॉ जगदीप सिह

उपनिदेशक डिपार्टमेंट ऑफ हायर एजुकेशन चण्डीगढ


श्री वीरेन्द्र के बेनर्जी

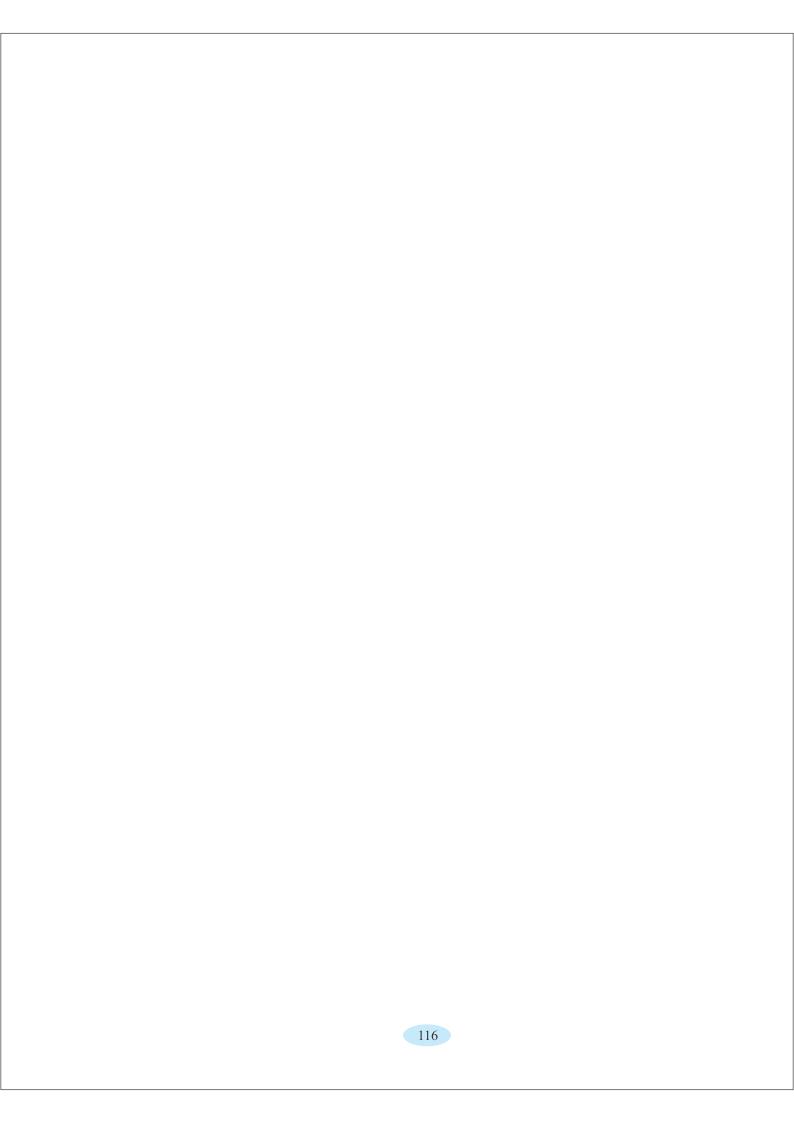
प्रशासनिक अधिकारी राष्ट्रीय कृषि—खाद्य जैवप्रौद्योगिकी संस्थान मोहाली

अनुसंधान प्रकाशन

2014

- एम्बालम पी, कोंडेपुडी केके, निल्सन आई, वाडस्ट्रॉम टी तथा लजुंध ए (2014) । बाइल इन्हांसेस सैल सर्फेस हाइड्रोफोबिसिटी एंड बायोफिल्म फॉर्मेशन ऑफ बिफिडाबैक्टिरिया । एप्पल बायोकैम बायोटेक्नोल । 172 (4): 1970–81
- 2. बाबूटा आर के, मुर्तजा एन, जगताप एस, सिंह डीपी, कौर जे, बोपाराय आरके, प्रेमकुमार एलएस, कोंडेपुडी केके तथा बिश्नोई एम (2014)। कैपसाइसिन—इनडयूर्ड ट्रांसक्रिप्शनल चेंजिज इन हाइपोथाल्मस एंड अल्ट्रेशन इन गट माइक्रोबायल काउंट इन हाई फैट डाइट फेड माइस। जर्नल ऑफ न्यूट्रीशनल बायोकेमिस्ट्री (इन—प्रैस)।
- 3. बिश्नोई एम, खरे पी, कोंडेपुडी केके तथा प्रेमकुमार एलएस (2014) रोल ऑफ टीआरवी1 न एक्वायर्ड डिजीजः थरेपौटिक पोटेंशियल ऑफ टीआरपीवी1 मोड्यूलेटर्स। इनवाइटिड बुक चेप्टर (इन—प्रेस)।
- 4. गर्ग एम, यानाका एम, टानाका एच तथा टसुजीमोटो एच (2014)। इट्रोग्रेशन ऑफ यूजफुल जीनस फरॉम जीपदवचलतनउ पदजमतउमकपनउ टू व्हीट फॉर इम्प्रूवमेंट ऑफ ब्रीड—मेकिंग क्वालिटी। ब्रिडिंग साइंस, 133:327—324
- 5. कोंडेपुडी केके, बिश्नोई एम, पोडिल के, अम्बालम पी, मजूमदार के, बाबूटा आरके तथा बोपाराय आरके (2014) डायटरी पोलिस्क्राईडस फॉर द मॉड्यूलेशन ऑफ ओबिसिटी वाय बेनिफसियल गट माइक्रोबायल मैनीपुलेशन। सीआरबी पब्लिकेशन्स। (इनप्रेस)
- 6. कुमार जे, गनपती एस, कुमार जे, कुमारी ए, कुमार ए, तुली आर तथा सिंह एसपी (2014)। वायरस इन्डयूर्ड जीन साइलेसिंग यूजिंग ए मोडिफाइड बीटासैटेलाइटः ए पोटेंशियल कैंडिडेट फॉर फंक्शनल जीनोमिक्स ऑफ क्रॉप्स। अकाईव्स ऑफ विरोलॉजी। डीओआई 10.1007/एस 00705-014-2039-एक्स।
- 7. कुमार जे कुमार जे सिंह, एसपी तथा तुली आर (2014)। एसोसिएशन ऑफ सैटेलाइट विद ए मास्टरवायरस इन नैचुरल इंफेक्शनः कम्प्लेक्सिटी ऑफ व्हीट डवार्फ इंडिया वायरस डिजीज। जर्नल ऑफ विरोलॉजी। 88 (12): 7093—7104
- 8. शर्मा एस तथा उपाध्याय एसके (2014) फंक्शनल करेक्टराइजेश ऑफ एक्सप्रेस्ड सीक्वेंस टेग्स ऑफ ब्रीड व्हीट ;ज्तपजपबनउ मेजपअनउद्ध एंड एनालाइसिज ऑफ सीआरआइएसपीआर—बाईंडिंग साईट्स फॉर टारगेटिड जीनोम एडिटिंग। अमेरिकन जर्नल ऑफ बायोइन्फोर्मेटिक्स रिसर्च (इन प्रेस)।
- 9. सिंह एसपी तथा सैनी एमके (2014)। पोस्टहार्वेस्ट भापौर हीट ट्रीटमेंट एज ए फाइटोसैनिटरी मिजर इन्फ्लुएन्सेसं द अरोमा वोल्टाइल्स प्रोफाइल ऑफ मैंगो फ्रुट 1 फुड कैमिस्ट्री (इन प्रेस)।
- 10. सिंह एसपी, सैनी एमके, सिंह जे, पोन्जनेर ए तथा सिधू जीएस (2014) प्रीहार्वेस्ट एप्व्लीकेशन ऑफ अबसिसिक एसिड प्रोमोट्स एंथोसाइनिन्स एक्यूम्युलेशन इन पेरीकार्ज ऑफ लीची फ्रुट विदाउट एडवर्सिल एफेक्टिंग पोस्टहार्वेस्ट क्वालिटी। पोस्टार्वेस्ट बायोलॉजी एंड टेक्नोलॉजी (इन—प्रेस)।
- 11. सिंह ए, मंत्री एस, भार्मा एम, चौधरी ए, तुली आर तथा रॉय जे (2014) जीनोम—वाइड ट्रांसक्रिप्टोम स्टडी इन व्हीट आइडेंटिफाईड कैंडिडेट जीन्स रिलेटिड टू प्रोसेसिंग क्वालिटी, मेजोरिटी ऑफ डैम भॉविग इंट्रेक्शन

(क्वालिटी ग् डेवलपमेंट) एंड हैविंग टेम्पोरल एंड स्पेशियल डिस्ट्रीब्यूशन। बीएमसी जीनोमिक्स 15:29


12. ठाकुर एन, उपाध्याय एसके, चन्द्रशेखर के, वर्मा पीसी, सिंह तथा तुल आर (2014)। इन्हांस्ड व्हाइफ्लाई रेसिस्टेंस इन ट्रांसजेनिक टोबैको प्लांट्स एक्सप्रेसिंग, डीएसआरएनए ऑफ वी—एटीपीएएसएए जीन। पीएलओएस वन 9 (3): इ 87235

2013

- दीक्षित एस, उपाध्याय एसके, सिंह एच, वर्मा पीसी तथा चन्द्रशेखर के (2013)। इन्हांस्ड मेथॉल प्रोडक्शन इन प्लांट्स प्रोवाइड्स ब्रोड स्पेक्ट्रम इनसेक्ट रिसिसटेंटस। पीएलओएस वन, 8 (11): ई 79664
- 2. कुमार जे, सिंह एसपी, कुमार ए, खान जेए तथा तुली आर (2013)। रिकम्बीनाइजेशन स्टडी भूजिंग रोडिश लीफ कर्ल वायरस इसोलेट्स। अफ्रिकन जर्नल ऑफ माइक्रोबायोलॉजी रिसर्च, 7:3542—3546
- 3. खान जेए, कुमार जे, ठाकुर पीडी, हांडा ए तथा जरायल के (2013)। फ्रास्ट रिपोर्ट ऑफ ए ब्दकपकंजमे फायटोप्लाज्मा जीजीफी—रिलेटिड स्ट्रेन एसोसिएटिड विद पिच डेक्लाइन डिजीज इन इंडिया। जर्नल ऑफ प्लांट पैथोलॉजी, 95 (एस 4): 76
- 4. कुमार जे, गणपित एस, सिंह एसपी, गेडरे आर, भार्मा एनसी तथा तुली आर (2013)। मोलिक्यूलर करेक्टराइजेशन एंड पेथोजेनिसिटी ऑफ कैरेट ;कंनबने ब्तवजंद्ध इनफेक्टिंग बेगोमोवायरस एंड एसोसिएटेड बैक्टासटेलाइट फरॉम इंडिया।
- 5. श्रीवास्तव आर रॉय केएम, श्रीवास्तव एम, कुमार वी, पांडेय बी, सिंह एसपी, बेग एसके, सिंह बीडी, तुल आर तथा सांवत एसवी (2013)। डिस्टींक्ट रोल ऑफ कोर प्रोमोटर आर्किटेक्चर इन रेगुलेशन ऑफ लाइट मोडिएटिड रिस्पोंसेस इन प्लांट जीन्स। मोलिक्यूलर प्लांट डीओआई : 10.1093 / एमपी / एसएसटी 146
- 6. सिंह एसपी टेरी एलए (2013)। रिसेंट एडवांसिज इन स्टोरेज टेक्नोलॉजिस फॉर फ्रैश फ्रुट एडवांसेज इन फूड साइंस एंड न्यूट्रिशन। वॉल. 2, विले, एमए, यूएसए 391—412
- 7. उपाध्याय एसके, दीक्षित राय, भार्मा एस, सिंह एच, कुमार जे, वर्मा पीसी तथा चन्द्रशेखर के (2013) एसआईआरनए मशीनरी इन व्हाईपलाई ;उमउपेपंजंइंबपद्ध । पीएलओएएस वन 8 (12): ई83692
- 8. उपाध्याय एसके, कुमार जे, आलोक ए तथा तुली आर (2013)। आरएनए गाइडेउ जीनोम एडिटिंग फॉर मिल्टिपल टारगेट जीन मुटेशन्स इन व्हीट। जीन्स जीनोम्स जेनेटिक्स 3:2233—2238

मानव संसाधन

I. अनुसंधान संकाय-सदस्य

क्र.सं.	नाम	पदनाम	कार्यभार ग्रहण की तिथि			
नियमि	नियमित सकाय सदस्य					
1	प्रो. अखिलेश के. त्यागी	कार्यकारी निदेशक	01-10-2013			
2	डॉ. राकेश तुली	पूर्व कार्यकारी निदेशक	08-02-2010			
3	डॉ. विकास ऋषि	वैज्ञानिक 'ई'	01-03-2012			
4	डॉ. जॉय के. रॉय	वैज्ञानिक 'डी'	09-08-2010			
5	डॉ. अजय के. पांडेय	वैज्ञानिक 'डी'	14-11-2011			
6	डॉ. सिद्धार्थ तिवारी	वैज्ञानिक 'सी'	28-07-2010			
7	श्री श्रीकांत सुभाष मंत्री	वैज्ञानिक 'सी'	18-08-2010			
8	डॉ. (सुश्री) मोनिका गर्ग	वैज्ञानिक 'सी'	30-11-2010			
9	डॉ. सुखविंदर पी. सिंह	वैज्ञानिक 'सी'	06-12-2010			
10	डॉ. कांथी किरन के.	वैज्ञानिक 'सी'	02-09-2011			
11	डॉ. महेन्द्र बिश्नोई	वैज्ञानिक 'सी'	16-12-2011			
12	डॉ. कौशिक मजूमदार	वैज्ञानिक 'सी'	01-02-2012			
13	डॉ. नितिन के. सिंघल	वैज्ञानिक 'सी'	02-03-2012			
अनुबंध	अनुबंधित संकाय सदस्य					
14	डॉ. शैलेश शर्मा	परियोजना वैज्ञानिक	02-01-2012			
15	डॉ. सुधीर पी. सिंह	परियोजना वैज्ञानिक 04-01-2012				
16	डॉ. हरिओम यादव	रामालिंगास्वामी फैलो 14-12-2012				
17	डॉ. संतोष कुमार उपाध्याय	इंस्पायर फैलो	01-03-2013			
18	डॉ. आशुतोष पाण्डेय	परियोजना वैज्ञानिक	04-12-2013			

II. तकनीकी एवं अभियांत्रिकी सहायता

क्र.स.	नाम	पदनाम	कार्यभार ग्रहण की तिथि
1	श्री ई. सुब्रह्मण्यम्	तकनीकी सहायक (कम्प्यूटर)	27-02-2010
2	सुश्री आकृति गुप्ता	वरिष्ठ तकनीकी सहायक	22-02-2011
3	श्री जगदीप सिंह	वरिष्ठ तकनीकी सहायक	01-03-2011
4	श्री सुखजिंदर सिंह	तकनीकी सहायक (कम्प्यूटर)	23-02-2012
5	श्री जसप्रीत सिंह	सहायक अभियंता	19-03-2012
6	श्री सुशांत वत्स	सहायक अभियंता	02-04-2012
7	डॉ. मेनपाल सिंह	वरिष्ठ तकनीकी सहायक	24-12-2012
8	श्री अतुल केसरवानी	वरिष्ठ तकनीकी सहायक	21-01-2013
9	श्री कमलेन्द्रा	वरिष्ठ तकनीकी सहायक	18-03-2013
10	श्री पंकज पाण्डेय	वरिष्ठ तकनीकी सहायक	29-04-2013

III. प्रशासन

क्र.सं.	नाम	पदनाम	कार्यभार ग्रहण की तिथि
1	श्री रतन लाल शर्मा	सहनिदेशक (लेखा एवं वित्त)	25-5-2011
2	श्री एस. कृष्णन्	भंडार एवं क्रय अधिकारी	10-03-2010
3	श्री विरेन्द्र के. बेनर्जी	प्रशासनिक अधिकारी	21-02-2013
4	श्री सुनीत वर्मा	वित्त अधिकारी	15-09-2011
5	श्री साबिर अली	प्रबंधन सहायक (प्रशासन)	21-01-2011
6	सुश्री हेमा रावत	प्रबंधन सहायक (लेखा)	01-04-2011
7	श्री विशाल कुमार	प्रबंधन सहायक (लेखा)	08-09-2011
8	श्री आशीष अरोड़ा	प्रबंधन सहायक (प्रशासनिक)	15-06-2012
9	श्री अरुण कुमार	प्रबंधन सहायक (जन सम्पर्क)	21-06-2012
10	सुश्री अनुकिरण	पुस्तकालय सहायक	19-12-2012

IV. मानव संसाधन विकास

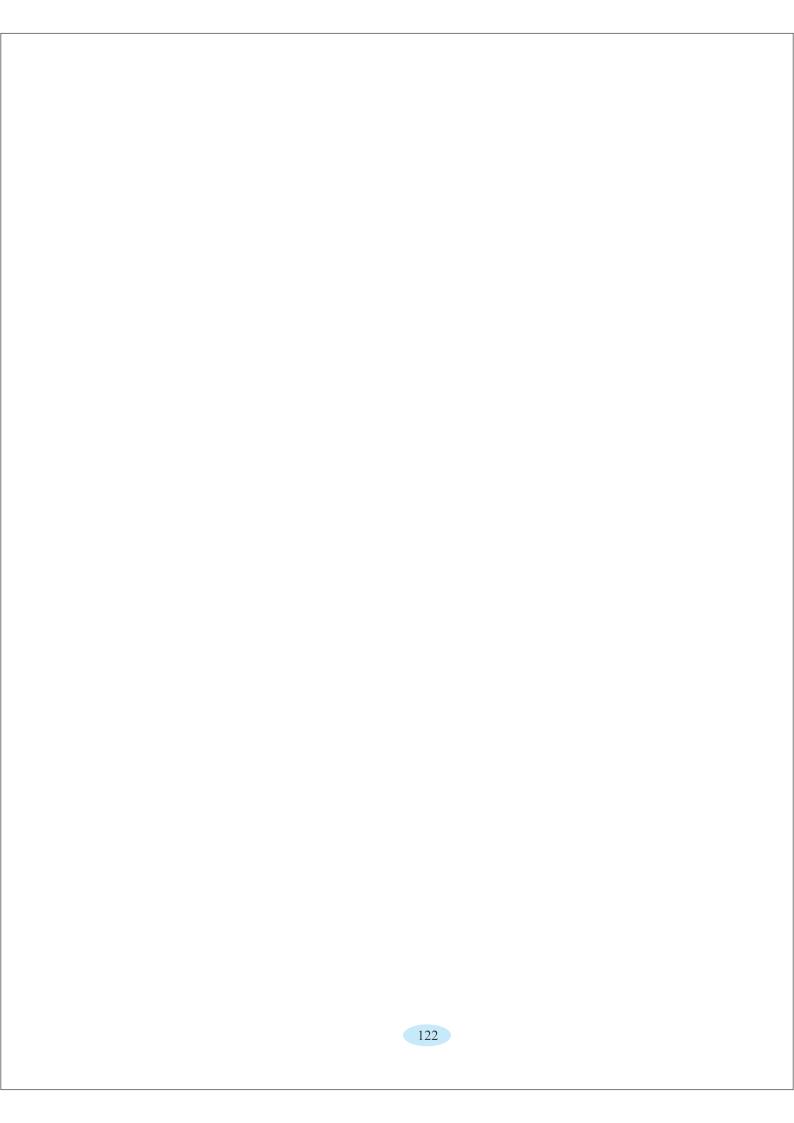
i. अनुसंघान छात्रः

क्र.सं.	नाम	अनुसंधान का नाम	अवार्डिंग विश्वविद्यालय / संस्थान		
पीएच.	डी डिग्रियों हेतु नामािक	त विद्यार्थी			
1	श्री जितेन्द्र कुमार	वायरस इंडयूस्ड जीन साइलेसिंग वेक्टर का विकास तथा गेहूं (Triticum aestivum) में अध्ययन जीन फंक्शन में इसका उपयोग	बर्कतुल्लाह यूनिवर्सिटी, भोपाल, मध्यप्रदेश (थिसिज प्रस्तुत)		
2	श्री योगेश गुप्ता	एनोना किस्मों में सीडलेसनेस हेतु जीन की खोज	पंजाब युनिवर्सिटी, चण्डीगढ़, पंजाब		
3	सुश्री अनुराधा सिंह	स्टार्च बायोसिंथेसिस पथवे जीनों का अभिव्यक्ति विश्लेषण तथा स्टार्च गुणवर्ता पर इनके प्रभाव	गुरु जम्बेश्वर युनिवर्सिटी ऑफ विज्ञान एंव तकनीक, हिसार, हरियाणा		
4	श्री रोहित कुमार	भारतीय गेहूं कल्टीवर्स में प्यूरोइंडोलाईंस में एलेलिक रूपांतरण, हार्डनेस एवं स्टार्च ग्रेन्यूल प्रोपर्टिज के साथ इनका संयोजन	पंजाब युनिवर्सिटी, चण्डीगढ़, पंजाब		
5	श्री अशु अलोक	गेहूं (Triticum aestivum) से म्यो—इनोसिटोल ऑक्सीजेंस (एमआईओएक्स) की क्लोनिंग एवं फंक्शनल करेक्टराइजेशन	बर्कतुल्लाह यूनिवर्सिटी, भोपाल, मध्यप्रदेश		
6	सुश्री अनिता कुमारी	मॉडल सिस्टम के रूप में Arabidopsis thaliana उपयोग से रूटस्टॉक से ग्राफ्ट ट्रांसमिसेबल सिग्नल्स के माध्यम से सिओन का मोड्यूलेशन	बर्कतुल्लाह यूनिवर्सिटी, भोपाल, मध्यप्रदेश		
7	सुश्री मोनिका शर्मा	फेनाइलाप्रोपेनोइड पथवे में युकत जीन्स का जीनोमिक करेक्टराइजेशन एवं बायोकेमिकल्स विश्लेषण तथा गेहूं की पोषणिक एवं प्रसंस्करण गुणवत्ता पर इसके प्रभाव	पंजाब विश्वविद्यालय, चंडीगढ़, पंजाब		
8	श्री रितेश कुमार बाबूटा	कैपसाइसिन द्वारा एडीपोजेनसिस, मोटापा एवं संबंधित कंप्लीकेशनों के मोड्यूलेशन पर अध्ययन	यूआईईटी पंजाब विश्वविद्यालय, चंडीगढ़		

क्र.सं.	नाम	पदनाम	कार्यभार ग्रहण की तिथि
1	श्री जितेश कुमार	कनिष्ठ अनुसंधान अध्येता	09-09-2011
2	सुश्री मनप्रीत कौर सैनी	कनिष्ठ अनुसंधान अध्येता	09-09-2011
3	श्री कौशल कुमार भट्टी	कनिष्ठ अनुसंधान अध्येता	14-11-2011
4	श्री राजा जीत	कनिष्ठ अनुसंधान अध्येता	12-03-2012
5	श्री आशीष कुमार पाठक	कनिष्ठ अनुसंधान अध्येता	08-08-2012
6	सुश्री सिपला अग्रवाल	कनिष्ठ अनुसंधान अध्येता	16-08-2012
7	श्री प्रतीक जैन	कनिष्ठ अनुसंधान अध्येता	31-08-2012
8	सुश्री स्टैंजिन अंगमो	कनिष्ठ अनुसंधान अध्येता	11-02-2013
9	सुश्री शिवानी शर्मा	कनिष्ठ अनुसंधान अध्येता	12-02-2013
10	श्री शशांक सिंह	कनिष्ठ अनुसंधान अध्येता	22-02-2013
11	श्री विष्णु शुक्ला	कनिष्ठ अनुसंधान अध्येता	25-02-2013
12	सुश्री मनदीप कौर	कनिष्ठ अनुसंधान अध्येता	18-03-2013
13	सुश्री शिवानी	कनिष्ठ अनुसंधान अध्येता	11-05-2013
14	सुश्री शैली सरदूल सिंह	कनिष्ठ अनुसंधान अध्येता	16-07-2013
15	सुश्री निदा मुर्तजा	कनिष्ठ अनुसंधान अध्येता	25-07-2013
16	सुश्री पारूल उपाध्याय	कनिष्ठ अनुसंधान अध्येता	01-08-2013
17	श्री अनूप किशोर सिंह गुर्जर	कनिष्ठ अनुसंधान अध्येता	05-08-2013
18	श्री अमन कुमार	कनिष्ठ अनुसंधान अध्येता	05-08-2013
19	श्री कौशिक शाह	कनिष्ठ अनुसंधान अध्येता	05-09-2013
20	श्री धीरेन्द्र प्रताप	कनिष्ठ अनुसंधान अध्येता	11-09-2013
21	सुश्री याचना जैन	कनिष्ठ अनुसंधान अध्येता	19-09-2013
22	श्री प्रज्ञांशु खरे	कनिष्ठ अनुसंधान अध्येता	23-09-2013
23	श्री सिद्धार्थ शर्मा	कनिष्ठ अनुसंधान अध्येता	25-09-2013
24	सुश्री हरसिमरन कौर	कनिष्ठ अनुसंधान अध्येता	26-09-2013
25	सुश्री वंदना	कनिष्ठ अनुसंधान अध्येता	14-10-2013
26	सुश्री नवनीत कौर	कनिष्ठ अनुसंधान अध्येता	28-01-2014
27	श्री नंद किशोर शर्मा	कनिष्ठ अनुसंधान अध्येता	29-01-2014
28	श्री पंकज कुमार	कनिष्ठ अनुसंधान अध्येता	25-02-2014
29	श्री उस्मान अली	कनिष्ठ अनुसंधान अध्येता	13-03-2014

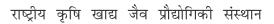
ii. परियोजना सहायक

क्र.सं.	नाम	पदनाम	कार्यभार ग्रहण करने की तिथि
1	श्री विक्रांत शर्मा	परियोजना सहायक	01-04-2012
2	श्री अनिल कुमार सैनी	परियोजना सहायक	01-01-2013
3	सुश्री हरसिमरन कौर	परियोजना सहायक	01-01-2013


iii. प्रशिक्षु :

क्र स	नाम	पदनाम	कार्यभार ग्रहण की तिथि
1	सुश्री गुरप्रीत कौर	प्रशिक्षु	05-07-2013
2	सुश्री पंखूड़ी मित्तल	प्रशिक्षु	05-07-2013
3	श्री चोपडे देवीदास वी.	प्रशिक्षु	05-07-2013
4	सुश्री हरमनजीत कौर	प्रशिक्षु	05-07-2013
5	सुश्री अचला शर्मा	प्रशिक्षु	05-07-2013
6	सुश्री शैफाली रॉय	प्रशिक्षु	05-07-2013
7	सुश्री अंकिता सिंगला	प्रशिक्षु	05-07-2013
8	सुश्री प्रियंका कुमारी	प्रशिक्षु	05-07-2013

महत्त्वपूर्ण कार्यक्रमों की चित्र दीर्घा


The state of the s

संस्था में अतिथि (यूरोपियन डेलिगेशन)— 27 मई, 2013

यूरोप अर्थात पारको टेक्नोलॉजी पडानो (लोम्बार्डी, इटली), एग्रोपोलिस इंटरनेशनल (लम्बेडोक— रौडिलिअन, फ्रांस) तथ उस्ट एनवी (फूड वैली वेगेनिनघम, नीदरलैंड) के तीन बड़े एग्रो—फूड बायोटिक क्लस्टर्स से प्रतिनिधियों से युक्त यूरोपियन डेलिगेश आगामी सहयोग की सम्भावनाओं की खोज हेतु नाबी पर पधारी।

स्वतन्त्रता दिवस समारोह 15 अगस्त, 2013

डॉ. राकेश तुली कार्यकारी निदेशक, नाबी तथा डॉ. आर.एस. सांगवान, सीईओ, सीआईएबी ने नाबी अंतरिम सुविधा में ध्वज फहराया और स्टाफ सदस्यों को संबोधित किया।

नाबी अंतरिम सुविधा में स्वतन्त्रता दिवस का आयोजन

THE THE STATE OF STAT

संस्थान पर आयोजित गतिविधि/कार्यशाला

8 मई 2013 को राष्ट्रीय कृषि जैव प्रौद्योगिकी संस्थान (नाबी) द्वारा "पोस्टहार्वेस्ट स्टेबिलिटी ऑफ फार्म प्रोड्यूस" विषय पर ब्रेनस्टोर्मिंग सत्र आयोजित किया गया। प्रोफेसर के. एल. चड्ढा, अध्यक्ष भाारत की बागवानी समिति तथा पूर्व डडीजी (हॉर्ट), आईसीएआर ने सत्र की अध्यक्षता की। सत्र पूरे देश से उच्च निपुण अन्वेषकों, भौक्षिक जगत तथा औद्योगिक प्रतिनिधियों द्वारा भाग लिया गया था। डॉ. सी.आर. भाटिया, पूर्व सचिव, डीबीटी, डॉ. पी. वी. सान, पूर्व निदेशक एनबीआरआई राजेश कपूर, सलाहकार, डीबीटी, डॉ. आर.के.पाल, पोमिग्रानेट के निदेशक आईसीएआर—एनआरसी तथा डॉ. रेखा सिंघल, हैड, आईसीटी, मुम्बई के साथ प्रतिष्ठित प्रतिभागियों ने सत्र में भाग लिया।

केला रूपांतरण एवं ट्रेकर सॉफ्टवेयर पर एक अंतर्राष्ट्रीय कार्यशाला 15—20 सिंतबर, 2013 के दौरान बीआईआरएसी, इंडिया—क्यूयूटी, ऑस्ट्रेलिया बनाना बायोफोर्टिफिकेशन प्रोजेक्ट के अधीन आयोजित की गई। बीआईआरएसी, नई दिल्ली, क्यूयूटी ऑस्ट्रेलिया, नाबी, मोहाली, बीएआरसी, एनआरसीबी, ट्राईके, आईआईएचआ, बैंगलोर तथा टीएनएयू, कॉयम्बटूर के प्रतिभागियों के द्वार बैठक एवं कार्यशाला में भाग लिया गया।

नाबी पर गणतन्त्र दिवस समारोह' 26 जनवरी 2014

डॉ. आर.एस. सांगवान, सीईओ, सीआईएबी अंतरिम सुविधा पर राष्ट्रीय ध्वज फहराया

नाबी स्टाफ, नाबी परिसर पर अपने परिवार के सदस्यों के साथ गणतन्त्र दिवस मानते हुए।

चतुर्थ स्थापना दिवसः 20 फरवरी, 2014

बाएं से प्रथम पंक्तिः डॉ. आर.एस सांगवान, सीईओ, अखिलेश के त्यागी, कार्यकारी निदेशक, नाबी, डॉ. दिनकर एम. सालुंके, आरसीबी, डॉ. राकेश तुली, पूर्व कार्यकारी निदेशक, नाबी तथा डॉ. विकास ऋषि, वैज्ञानिक—ई, नाबी।

डॉ. दिनकर एम सालुंके इस अवसर पर मुख्य अतिथि थे।

बाएं से द्वितीय पंक्ति : प्रो. अखिलेश के त्यागी, दीप प्रज्जवलित करते हुए व सभी को सम्बोधित करते हुए।

बाएं से तृतीय पंक्ति : डॉ. विकास ऋषि, धन्यवाद प्रस्तुत करते हुए।

कार्यक्रम के पश्चात अतिथि लैब में पधारे।

वित्तीय

यू. के.मेहता एंड पसोसिएट्स (चार्टर्ड एकाउंटेंट्स) 904, सेक्टर 40ए,चंडीगढ़160036 फोन:0172-2629622,9814301213 ई - मेल: u.kmehtas@gmail.com

लेखा परीक्षक रिपोर्ट

हमने 31 मार्च , 2014 को राष्ट्रीय कृषि खाध जैव प्रोधियोगिकी संस्थान के संतुलन पत्र तथा आय और व्यय की जाँच की है, जो कि संस्था द्वारा बनाये गए खातों के अनुसार है।

हमने सभी जानकारी तथा स्पस्टिकरण जो हमारे ज्ञान तथा विश्वास की पुष्टि करने के लिए और लेखा परीक्षा के प्रयोजनों के लिए आवश्यक थे प्राप्त किए हैं। हमारी राय में, खाते की उचित पुस्तकें प्रधान कार्यालय, मोहाली द्वारा रखी गई हैं, जो की अब तक हमारी परीक्षा की पुस्तकों से प्रकट होता है तथा उचित लेखा परीक्षा के प्रयोजनों के लिए प्राप्त किया गया है। जो कि नीचे दी गई टिप्पणी के अधीन है।

-----शृन्य-----

हमारी राय में तथा हमारी जानकारी के अनुसार और हमे दी गई जानकारी के अनुसार दिये गए खाते एक सच्चे और निष्पक्ष दृष्टिकोण दे रहे हैं।

- (l) सतुलन पत्र के मामले में, ऊपर दिये गए संस्थान की स्थिति 31 मार्च, 2014 की है।
- (II) आय और व्यथ के मामले में, ऊपर दिये गए संस्थान की स्थिति 31 मार्च 2014 को समाप्त वर्ष की है।

निर्धारित विवरण इसके साथ संलग्न हैं।

जगह: चंडीगढ़

तिथि: 08.07.2014

हस्ताकृत

यू. के. मेहता एंड एसोसिएट्स

चार्टर्ड अकाउंटेंट

(यू.के. मेहता) एफसीए मैम्बरशिप: नं: = 092639

एफ़आरएन -013381एन

वितीय विवरण (गैर लाभ संगठन) राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान C-127 औद्योगिक क्षेत्र चरण SAS 7. नगर. मोहाली वार्षिक वित्त - विवरण 31 मार्च 2014 का तुलन पत्र

राशि (रू. में)

VII			
पूंजी निधि और देयताओं की घोषणा	अनुसूची	चाल् वर्ष	पिछले वर्ष
कोष/पूंजी निधि	1	521,804,081	438,556,350
आरक्षित और अधिशेष	2	-	
निर्धारितःधर्मादा कोष	.)	15,686,198	17,063.097
सुरक्षित ऋण और उधार	4		
अनुरक्षित ऋण और उधार	5	-	
आस्थमित ऋण दायित्व	6	-	
वर्तमान दैयतारं और प्रावधान	7	7,813,307	10.080.443
योग		545,302,586	465,699,790
परिसम्पत्ति			
अचल सम्पत्ति	*	267,098,974	313,537,217
कार्य में प्रमित पूंजी	8	64,601,217	17,014,470
निवेश से निर्धारित की गई निधियों धर्मादा	9	10,.29.167	10.265.534
निवेश - अन्य	10		-
वालू परिसम्मिन्याँ, ऋण एवं अग्रिम आदि	11	203.473.228	134,882,579
વિિધ ત્યય			-
योग		545,302,586	465,699,7911
महत्वपूर्ण लेखांञ्ज नीतियों	24		
आकस्मिक देयताएं और खातो पर टिप्पणियाँ	25		

राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान के लिए

हमारी अलग संलग्न रिपोर्ट के अनुसार

हरताकृत हरताकृत विदा अधिकारी कार्यकारी निदेशक सांदिधिक लेखा परीक्षक यूके. मेहता एंड एसोतिएट्स

चार्देडे एकाउंटेंट

वितीय विवरण (गैर लाभ संगठन) राष्ट्रीय कृषि खाद्य जैव प्रौद्योगिकी संस्थान C-127 औद्योगिक क्षेत्र चरण SAS 7. नगर, मोहाली आय - ठ्यम लेखा

दिनांक 31 को समाप्त मार्च 2014 वर्ष के लिए

रशि (रु. मैं)

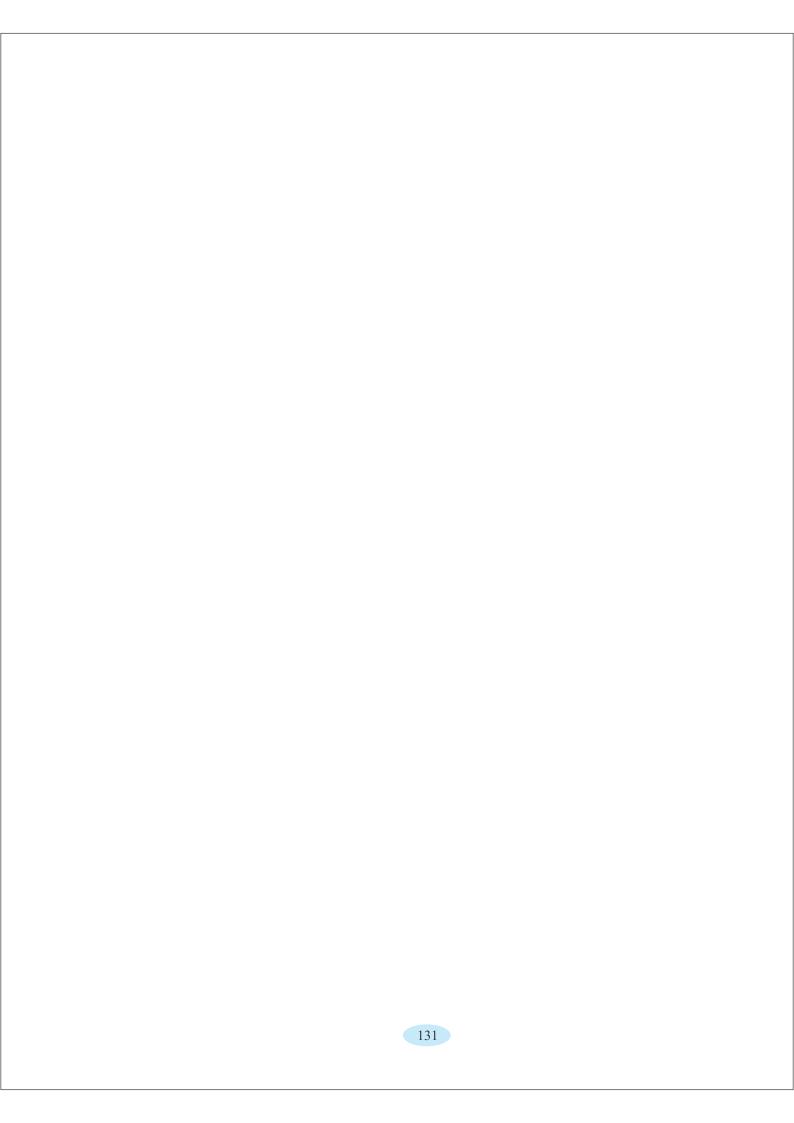
	र ।र। (४.म)		
	अनुस्ची	चालू वर्ष	पिछले वर्ष
आय			
बिक्री : तेवा से आय	12	-	-
अनुदान:राज-सहायताओं ।सब्सिडी।	1.3	\$1,000,000	77,494,400
फीराव्यद्द्या शुगतान	14	-	-
निवेश से आय	1.5	-	-
रॉयल्टी या प्रकाशन से आग	16	-	-
अर्जिट ब्यान	1.7	7,960,094	9,355,364
अन्य आय	1.8	5.306.152	7,695,349
ब्दाएँया कम तैयार माल और काम में प्रगति	.9		
का जायजा	-37	-	<u> </u>
योग (क)		64.326.246	94.545.113
4101 (4F)		04,720,240	94-14-5-11-1
ब्य य			
त्थापना व्यर	20	22,603,635	21,696,572
अन्य प्रशासनिक व्यय	21	37.377.666	56,858,685
अनुसंधान एवं विकास व्यय	23.	19,024,350	9,590,053
ब्याज	23	-	-
म्लयहास (वर्ष के अंत इसी शुद्ध कुल ४ अनुसूची)			
मूल्यहास		52,072,764	48,731,258
योग (ख)		131,078,415	146,876,568
हैर्नेस आय से अधिक व्यय जा अतिरिव्न(ख-क)		66,752,169	52,331,455
महत्वपूर्ण लेखांकण चीरियाँ	24		
आंकरिंगेक देवताएं और खातों पर टिप्पणियाँ	2.5		

राष्ट्रीय कृषि खाद्य जैव जैद्यौगिकी संस्थान के लिए

हमारी अलग संलग्न रिनोर्ट के अनुतार

हस्ताकृत

वित अधिकारी


६५ताकृत

कार्यकारी निदेशक

सांविधिक लेखा परीक्षक यू.के. मेहता एंड एसोसिएट्स

चार्वही एकाउँहैट

सी—127, इंडस्ट्रीयल एरिया, फेज़ 8, अजीतगढ़ (मोहाली), पंजाब, इंडिया—160 071 ईपीएबीएक्सः +91-172-2290100, फैक्सः 0172-4604888 वैबसाइटः www.nabi.res.in